Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(MM'\perp d\)
Xét tứ giác BB'CC' có :
\(BB'//CC'\left(\perp d\right)\)
\(\Rightarrow\)Tứ giác BB'CC' là hình thang
Xét hình thang BB'CC' có :
\(BM=MC\left(gt\right)\)
\(MM'//BB'//CC'\left(\perp d\right)\)
\(\Rightarrow B'M=C'M\)
\(\Rightarrow\)MM' là đường trung bình của hình thang ABCD
\(\Rightarrow MM'=\frac{BB'+CC'}{2}\left(1\right)\)
Xét \(\Delta AA'I\)và \(\Delta MM'I\)có :
\(\widehat{AA'I}=\widehat{MM'I}\left(=90^o\right)\)
\(AI=IM\left(gt\right)\)
\(\widehat{AIA'}=\widehat{MIM'}\)( đối đỉnh )
\(\Rightarrow\Delta AA'I=\Delta MM'I\left(ch-gn\right)\)
\(\Rightarrow AA'=MM'\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow AA'=\frac{BB'+CC'}{2}\)
a: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{NAM}=90^0\)
Do đó: AMEN là hình chữ nhật
mà AE là tia phân giác
nen AMEN là hình vuông