Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{3x+4}{2x+1}=\frac{2\left(3x+8\right)}{2\left(2x+1\right)}=\frac{6x+8}{2\left(2x+1\right)}=\frac{6x+3+5}{2\left(2x+1\right)}=\frac{3\left(2x+1\right)+5}{2\left(2x+1\right)}=\frac{3}{2}+\frac{5}{2x+1}\)
Xét\(2x+1< 0\Rightarrow\frac{5}{2\left(2x+1\right)}< 0\Rightarrow A>\frac{3}{2}\)
Xét \(2x+1< 0\)
Mà\(2x+1\in Z\)(vì \(x\in Z\))\(\Rightarrow2x+1\ge1\). Ta có:\(\frac{5}{2\left(2x+1\right)}< \frac{5}{2}\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{5}{2}=\frac{8}{2}=4\)
\(\Rightarrow A=4\Leftrightarrow2x+1=1\Leftrightarrow2x=0\Leftrightarrow0\)
Vậy GTNN của A=4 khi x=0
a) Có \(|x+3|\)\(\ge\)0
=>\(100-\)\(|x+3|\le100\)
=> GTLN của A là 100 khi x= -3
b) Tương tự GTNN của B là 100 khi x=2
a) Vì |1/2 - x| lớn hơn hoặc bằng 0
nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2
b) Vì |2x + 2/3| lớn hơn hoặc bằng 0
nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.
a) Vì |1/2 - x| lớn hơn hoặc bằng 0
nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2
b) Vì |2x + 2/3| lớn hơn hoặc bằng 0
nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.
\(B=\left|x+2,8\right|-3,5\)
\(\left|x+2,8\right|\ge0\)
\(\Rightarrow\left|x+2,8\right|-3,5\ge-3,5\)
\(\Rightarrow\)GTNN của B là -3,5
\(A=\frac{1}{2}-\left|2x-3\right|\)
\(\left|2x-3\right|\ge0\)
\(\Rightarrow\frac{1}{2}-\left|2x-3\right|\le\frac{1}{2}\)
\(\Rightarrow\)GTLN của A là \(\frac{1}{2}\)khi và chỉ khi \(2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
\(B=\dfrac{2x+4}{x+1}\)
\(B=\dfrac{2\left(x+1\right)+2}{x+1}\)
\(B=\dfrac{2\left(x+1\right)}{x+1}+\dfrac{2}{x+1}\)
\(\)Vì 2>0 nên