K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.

4 tháng 9 2023

Bài này là dạng bất phương trình vô tỉ ạ

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

27 tháng 2 2020
https://i.imgur.com/iZwCYiw.jpg
9 tháng 3 2022

Với x >= 0 ; x khác 16 

\(B=\dfrac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\dfrac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+1}\)

24 tháng 6 2021

`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`

`đk:x ne 0,x ne -2`

`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`

`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`

`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`

`=-4/(x+2)^2*(x+2)/4`

`=-1/(x+2)`

`b)P<0`

`<=>-1/(x+2)<0`

Vì `-1<0`

`<=>x+2>0`

`<=>x> -2`

`c)P=1/x+1(x ne 0)`

`<=>-1/(x+2)=1/x+1`

`<=>1/x+1+1/(x+2)=0``

`<=>x+2+x(x+2)+x=0`

`<=>x^2+4x+2=0`

`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\) 

`d)|2x-1|=3`

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\) 

`x=-1=>P=-1/(-1+2)=-1`

`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?

24 tháng 6 2021

a) đk: \(x\ne-2;2\)

 \(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)

\(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)

\(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)

b) Để P < 0

<=> \(\dfrac{-1}{x+2}< 0\)

<=> x +2 > 0

<=> x > -2 ( x khác 2)

c) Để P= \(\dfrac{1}{x}+1\)

<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)

<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)

<=> x2 + 4x + 2 = 0

<=> (x+2)2 = 2

<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)

d) Để \(\left|2x-1\right|=3\)

<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)

Thay x = -1, ta có:

P = \(\dfrac{-1}{-1+2}=-1\)

 

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

31 tháng 3 2023

a) Gọi x²=a 

=> 3a² - a - 234=0

∆=b² - 4ac= (-1)²-4×3×(-234)=2809

√∆=53

∆>0 nên pt có 2 nghiệm phân biệt 

a1=-b+√∆/2a = -(-1)+53/2×3 =9

a2=-b-√∆/2a = -(-1)-53/2×3 =-26/3

Thay x²=a=9 =>x=3,x=-3

          x²=a=-26/3 (loại)

Vậy nghiệm của pt là x =3, x=-3

 

 

 

 

 

 

 

 

 

31 tháng 3 2023

d) (x+4)(x+5)(x+7)(x+8)=4

<=> (x+4)(x+8)(x+5)(x+7)=4

<=> (x²+8x+4x+32)(x²+7x+5x+35)=4

<=> (x²+12x+32)(x²+12x+35)=4

Đặt t=x²+12x+32

=> t(t+3)=4

<=> t²+3t-4=0

     (a=1,b=3,c=-4)

a+b+c=1+3+(-4)=0

=> t1=1 ; t2= c/a =-4/1=-4

Thay t=x²+12x+32=1

=> x²+12x+31=0

∆=b²-4ac= 12² -4×1×31= 20

√∆=2√5

∆>0 nên pt có 2 nghiệm phân biệt 

x1=-b+√∆/2a= -12+2√5/2×1= -6+√5

x2=-b-√∆/2a = -12-2√5/2×1= -6-√5

Thay t=x²+12x+32=-4

=> x²+12x+36=0

∆=b²-4ac= 12²-4×1×36=0

∆=0 nên pt có nghiệm kép 

x1=x2= -b/2a= -12/2×1 = -6

Vậy nghiệm của pt là S={-6+√5 ; -6-√5; -6}

 

 

19 tháng 9 2018

a) ĐK: \(x\ge1\)

\(\sqrt{x+1}=x-1\)

\(\Rightarrow x+1=x^2-2x+1\)

\(\Rightarrow3x=x^2\) (1)

Do \(x\ne0\) nên chia mỗi vế của (1) cho x, ta được x = 3 (t/m)

21 tháng 9 2018

các câu khác có bạn nào pk làm chỉ mình vs

2 tháng 12 2020

a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)

\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)

b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)

\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)