\(⋮\)chia hết cho 21

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

\(B⋮21\Rightarrow B⋮3,7\)

(1)\(\Leftrightarrow B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)

           \(=2\times\left(1+2\right)+2^3\times\left(1+2\right)+...+2^{29}\times\left(1+2\right)\)

          \(=2\times3+2^3\times3+...+2^{29}\times3\)

          \(=3\times\left(2+2^3+...+2^{29}\right)⋮3\)

(2) \(B=\left(2+2^2+2^3\right)+...+\left(2^{28}+2^{29}+2^{40}\right)\)

        \(=2\times\left(1+2+2^2\right)+...+2^{28}\times\left(1+2+2^2\right)\)

         \(=2\times7+...+2^{28}\times7\)

         \(=7\times\left(2+...+2^{28}\right)⋮7\)

\(VayB⋮21\)

6 tháng 3 2017

còn lâu đi ha

27 tháng 5 2015

Ta có : \(1^n+2^n+3^n+4^n=10^n\) chia hết cho 5

Cũng biết, 5 chia hết cho các số có tận cùng = 0;5 .

Mà \(10^n\)có số tận cùng là 0 (vd: 105=100 000 ; 106=10 00 000..v...v) và n không chia hết cho 4(\(n\in N\)) nên sẽ chia hết cho 5

Vậy \(1^n+2^n+3^n+4^n\)chia hết cho 5 .

 

 

27 tháng 5 2015

 

+) Với n=4k+3 hoặc n=4k+1 => 1n+2n+3n+4n lẻ. k \(\in\)|N.

1n+2n+3n+4n đồng đư với 1n+2n+(-2)n+(-1)(mod 5) hay 1n+2n+3n+4n đồng đư với 1n+2n-2n-1n=0 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k+2, k\(\in\)|N.

1+24k+2+34k+2+44k+2=1+22.24k+32.34k+42.44k

                                  =1+4.16k+9.81k+16.256k

                 đồng dư với : 1.1+4.1+9.1+16.1=30 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k, k\(\in\)|N.

1n+2n+3n+4n = 1+24k+34k+44k

                      = 1+16k+81k+16k

       đồng dư với: 1+1+1+1=4 (mod 5)

=> 1n+2n+3n+4n không chia hết cho 5.

=> ĐPCM

15 tháng 12 2016

một số không chia hết cho 3 có hai dạng \(\orbr{\begin{cases}n=3k+1\left(1\right)\\n=3k+2\left(2\right)\end{cases}}\)

Xét từng cái của (1)

\(\left(1\right)n=3k+1\)

\(\left(1\right)n=3k+1\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1=3\left(k^2+2k\right)+1=3m+1\)chia 3 dư 1 => đúng

\(\left(2\right)n=3k+2\Rightarrow n^2=\left(3k+2\right)^2=9k^2+12k+4=3\left(k^2+4k+1\right)+1=3m+1\) chia 3 dư 1

(1)&(2) => mọi n không chia hết cho 3 thì n^2 chia 3 dư 1.

b)Áp dụng đáp số câu (a) : P n tố >3=> p không chia hết cho 3 (nếu chia hết thì ko nguyên tố)=>p^2=3k+1

=>A= P^2+2003=(3k+1)+2003=3k+2004

A=\(\orbr{\begin{cases}k=2n..\left(k.la.so.chăn\right)\Rightarrow3k+2004=3.2.n+2004\\k=2n+1\Rightarrow3k+2004=3\left(2k+1\right)+2004=6k+2007\end{cases}}\) 

2004 & 2007 cùng chia hết 3 =>A luôn chia hết cho 3=> A là hợp số

24 tháng 5 2015

n3 + 11n = n- n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6. 
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm) 

11 tháng 8 2018

n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n

Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6

;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6

Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿

8 tháng 8 2018

\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)

\(=5\times31+5^4\times31+5^7\times31\)

\(=31\times\left(5+5^4+5^7\right)⋮31\)

Vậy tổng trên chia hết cho 31

31 tháng 8 2020

            Bài làm :

Ta có :

\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)

\(=5\times31+5^4\times31+5^7\times31\)

\(=31\times\left(5+5^4+5^7\right)⋮31\)

=> Điều phải chứng minh

15 tháng 12 2016

\(A=3+3^2+3^3+...+3^9+3^{10}\)

\(A=\left(3+3^2\right)+...+\left(3^9+3^{10}\right)\)

\(A=12.\left(3^3+...+3^{10}\right)\)chia hết cho 4

15 tháng 12 2016

A=3+32+33+....+39+310 chia het cho4

=3.1+3.3+32.1+32.3+.....+39.1+39.3

=3.(1+3)+3.2(1+3)+......+39(1+3)

=3.4+32.4+......+39.4

vi 3.4 chia het cho 4

   32..4chia het cho 4

  39.4 chia het cho 4

nen A Chia het cho 4

14 tháng 7 2017

cứ tổng 4 số liên tiếp sẽ chia hết cho 126 => đpcm

14 tháng 7 2017

nhầm tổng 6 số liên tiếp sẽ chia hết chi 126

16 tháng 11 2016

a)ta tháy 1028 +8 chia hét cho 72 túc 1028 +8 chia hét cho 9 và 8

1028 +8=100......008(có 28 số 0)

mà 10....008 chia hét cho 9

      10..008 chia hết cho 8 vì có 3 số cuối chia hết cho 8

b)C=(3+32+33+34)+(3+36  +37  +38)+.......+(397+398+399+3100)

    C=3(40)+35(40)+......+397(40)

C=40(3+35+....+397) chia hết cho 40

16 tháng 11 2016

chịu

tk nhé

ai k mình mình k lại