Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Tam giác ABC cân tại A=> AB=AC
=> AD=BD=AE=EC
b,Xét tam giác ADG và tam giác BDK
GD=DK
ADG=BDK (đối đỉnh)
AD=DB (gt)
=> tam giác ADG=tam giác BDK
=>GAD=DBK
=> AG // BK(so le trong)
a) Xét tam giác ABE và tam giác ACD:
AB=AC ( giả thiết )
góc A chung
AE=AD (giả thiết)
=> tam giác ABE = tam giác ACD (c.g.c)
=> BE=CD ( hai cạnh tương ứng)
b) Ta có : DB = AB - AD ; EC = AC - AE
Mà AB = AC ; AD = AE ( giả thiết)
=> DB = EC
+) góc BDK + góc CDA = 180 độ ( kề bù )
+) góc CEK + góc AEB = 180 độ ( kb)
Mà góc CDA = góc AEB ( do tam giác ACD = tam giác ABE)
=> góc BDK = CEK
Xét tam giác KBD và KCE
góc BDK=CEK ( cmt)
BD=CE(cmt)
góc DBK = góc ECK ( do tam giác ACD = ABE)
=> tam giác KBD = tam giác KCE ( g.c.g)
a,XÉT tam giác ABE và ACD có
AE= AD(GT)
A là góc chung
AB=AC(gt)
=>tam giác ABE=ACD(c.g.c)
=>BE=CD(2 cạnh tg ứng)
=> góc B=D 2 góc tg ứng
Xét tam giác KBD và tam giác KCE có
K1=K2(đđ)
DB=DC(do AB=AC,AD=AE)
góc B= D(cmt)
=> tam giác KBD=KCE(g.c.g)
A B C D E I
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
hình bạn tự vẽ nhé
xét tam giác ADM và tam giác ADE có
AD = AE (GT)
AM là cạnh chung
DM = ME (gt)
Do đó tam giác ADM bằng tam giác ADE (c.c.c)
suy ra \(\widehat{BAM}=\widehat{CAM}\)2 GÓC TƯƠNG ỨNG
mà AN nằm giữa AB và AC
suy ra TIA AN LÀ TIA PHÂN GIÁC GÓC BAC
TƯƠNG TỰ TA CÓ TAM GIÁC ABN VÀ TAM GIÁC ACN BẰNG NHAU (C.C.C)
suy ra \(\widehat{BAN}=\widehat{CAN}\)2 GÓC TƯƠNG ỨNG
MÀ TIA AN NẰM GIỮA TIA AB VÀ TIA AC
SUY RA AN LÀ PHÂN GIÁC GÓC BAC (2)
từ (1) và (2) suy ra A,M,N thẳng hàng
Hình tự vẽ nha thanh niên :)
* Xét tam giác ADM và tam giác AEM có
AM là cạnh chung
AD=AE( theo GT )
DM=EM( M là trung điểm của DE)
=> Tam giác ADM = Tam giác AEM (c.c.c)
=> \(\widehat{DAM}\)=\(\widehat{EAM}\)(2 góc tương ứng)
=>AM là tia phân giác của \(\widehat{DAE}\)(1)
* Xét tam giác ABN và tam giác ACN có
AN là cạnh chung
AB=AC ( theo GT )
BN=CN ( N là trung điểm của BC )
=> Tam giác ABN = tam giác ACN (c.c.c)
=> \(\widehat{BAN}\)=\(\widehat{CAN}\)( 2 góc tương ứng )
=>AN là tia phân giác của \(\widehat{BAC}\)(2)
Từ (1) và (2) => A;M;N thằng hàng ( A;M;N thuộc tia phân giác của góc BAC)