Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/30+1/31+1/32+1/33+...+1/59+1/60
S có 31 phân số,ta thấy:
1/30>1/62 1/31>1/62 1/32>1/62 ............ 1/60>1/62
Vậy:
S>31.1/62
S>31/62
S>1/2
Vậy S>1/2
Chúc em học tốt^^
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100 < 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}< 1\)
=> ĐPCM
4A=1+1/4+1/42+......+1/498
4A - A = ( 1+1/4+1/42+..........+1/498) - ( 1/4+1/42+1/43+.......+1/499)
3A= 1-1/499
A= 1/3 - 1/499 : 3
Mà 1/499 : 3 > 0 => 1/3 - 1/499 : 3 < 1/3
Hay A < 1/3
a/ Rút gọn:
\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{99}}.\)
=> \(4A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}\)
=> \(4A=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}+\frac{1}{4^{99}}\right)-\frac{1}{4^{99}}\)
<=> \(4A=1+A-\frac{1}{4^{99}}\)
=> \(3A=1-\frac{1}{4^{99}}\)
=> \(A=\frac{1}{3}-\frac{1}{3.4^{99}}\)
b/ Ta có: \(A=\frac{1}{3}-\frac{1}{3.4^{99}}< \frac{1}{3}\)
\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(B=-\frac{3}{2^2}.\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right)...\left(-\frac{9999}{100^2}\right)\)
\(B=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\)(Vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)
\(B=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(B=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(B=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(B=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
\(\Rightarrow B< -\frac{1}{2}\)
ta có \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).......\left(\frac{1}{10}-1\right)\)
\(A=-\left(\frac{1}{2}.\frac{2}{3}.....\frac{9}{10}\right)\)
\(A=-\frac{1}{10}\)
vi\(-\frac{1}{10}>-\frac{1}{9}\)
do đó A>\(\frac{-1}{9}\)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\right)\)\(-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{2012}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{2012}}}{2}\)
Vì \(1-\frac{1}{3^{2012}}< 1\Rightarrow A< \frac{1}{2}\)
B=1/3+1/32+1/33+...+1/32005
3B = 1+1/3+1/32+...+1/32004
3B-B = 1-1/32005
2B = 1-1/32005
B = (1-1/32005)/2
Mà 1-1/32005 < 1
=> (1-1/32005)/2 < 1/2
hay 1/3+1/32+1/33+...+1/32005 < 1/2