K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

B=1/3+1/32+1/33+...+1/32005

3B = 1+1/3+1/32+...+1/32004

3B-B = 1-1/32005

2B = 1-1/32005

B = (1-1/32005)/2

Mà 1-1/32005 < 1

=> (1-1/32005)/2 < 1/2

hay 1/3+1/32+1/33+...+1/32005 < 1/2

27 tháng 6 2016

S=1/30+1/31+1/32+1/33+...+1/59+1/60

S có 31 phân số,ta thấy:

1/30>1/62                             1/31>1/62                          1/32>1/62         ............          1/60>1/62

Vậy:

S>31.1/62

S>31/62

S>1/2

Vậy S>1/2

Chúc em học tốt^^

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

26 tháng 8 2016

A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

A = 1 - 1/100 < 1

26 tháng 8 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=1-\frac{1}{100}< 1\)

=>  ĐPCM

14 tháng 8 2017

4A=1+1/4+1/42+......+1/498

4A - A = ( 1+1/4+1/42+..........+1/498) - ( 1/4+1/42+1/43+.......+1/499)

3A= 1-1/499

A= 1/3 - 1/499 : 3

Mà 1/499 : 3 > 0 => 1/3 - 1/499 : 3 < 1/3

                          Hay A < 1/3

 

14 tháng 8 2017

a/ Rút gọn:

\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{99}}.\)

=> \(4A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}\)

=> \(4A=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{98}}+\frac{1}{4^{99}}\right)-\frac{1}{4^{99}}\)

<=> \(4A=1+A-\frac{1}{4^{99}}\)

=> \(3A=1-\frac{1}{4^{99}}\)

=> \(A=\frac{1}{3}-\frac{1}{3.4^{99}}\)

b/ Ta có: \(A=\frac{1}{3}-\frac{1}{3.4^{99}}< \frac{1}{3}\)

28 tháng 11 2017

\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(B=-\frac{3}{2^2}.\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right)...\left(-\frac{9999}{100^2}\right)\)

\(B=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\)(Vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)

\(B=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)

\(B=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)

\(B=-\left(\frac{1}{100}.\frac{101}{2}\right)\)

\(B=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

\(\Rightarrow B< -\frac{1}{2}\)

18 tháng 12 2019

b với 1/2 hộ mình với

24 tháng 2 2017

ta có \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).......\left(\frac{1}{10}-1\right)\)

\(A=-\left(\frac{1}{2}.\frac{2}{3}.....\frac{9}{10}\right)\)

\(A=-\frac{1}{10}\)

vi\(-\frac{1}{10}>-\frac{1}{9}\)

do đó A>\(\frac{-1}{9}\)

26 tháng 11 2016

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\right)\)\(-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^{2012}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{2012}}}{2}\)

Vì \(1-\frac{1}{3^{2012}}< 1\Rightarrow A< \frac{1}{2}\)