Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (3x +1) (9x3 - 3x +1) = (3x)3 + 13
b.(x+4)(x2-4x+16)=x3+43
c. (5x+2)(25x2-10x+4)=(5x)3+23
d. (2x+3)(4x2-6x+9)=((2x)3+33
e. Đoán xem
Bài 1 :
Tự phân tích vế trái và điền vào vế phải
Bài 2 :
a) \(3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
b) \(2xy+z+2x+yz\)
\(=\left(2xy+2x\right)+\left(z+yz\right)\)
\(=2x\left(y+1\right)+z\left(y+1\right)\)
\(=\left(y+1\right)\left(2x+z\right)\)
c) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
d) \(3x^2-4x-7\)
\(=3x^2+3x-7x-7\)
\(=3x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-7\right)\)
d)5.(x-y)-y(x-y)
=(x-y)(5-y)
e) y.(x-z)+7(z-x)
=y.(x-z)-7(x-z)
=(x-z)(y-7)
Bài 1:
\(A=-x^2-2x+9\)
\(A=-\left(x^2+2x-9\right)\)
\(A=-\left(x^2+2x+1-10\right)\)
\(A=-\left(x+1\right)^2+10\)
Vì \(-\left(x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x+1\right)^2+10\le10\)
\(\Rightarrow Amax=10\Leftrightarrow x=-1\)
\(B=-9x^2+6x+25\)
\(B=-\left(9x^2-6x-25\right)\)
\(B=-\left[\left(3x\right)^2-2.3x+1-26\right]\)
\(B=-\left(3x-1\right)^2+26\)
Vì \(-\left(3x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(3x-1\right)^2+26\le26\)
\(\Rightarrow Bmax=26\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(C=-x^2+x+1\)
\(C=-\left(x^2-x-1\right)\)
\(C=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-1\right)\)
\(C=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Vì \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Rightarrow Cmax=\dfrac{5}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(D=-2x^2+3x+1\)
\(D=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)
\(D=-2\left(x^2-2.x\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{1}{2}\right)\)
\(D=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\)
Vì \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
\(\Rightarrow-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\)
\(\Rightarrow Dmax=\dfrac{17}{8}\Leftrightarrow x=\dfrac{3}{4}\)
\(E=-25x^2-10x+7\)
\(E=-\left(25x^2+10x-7\right)\)
\(E=-\left[\left(5x\right)^2+2.5x+1-8\right]\)
\(E=-\left(5x+1\right)^2+8\)
Vì \(-\left(5x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(5x+1\right)^2+8\le8\)
\(\Rightarrow Emax=8\Leftrightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
Bài 2:
\(A=9x^2+6x+4\)
\(A=\left(3x\right)^2+2.3x+1+3\)
\(A=\left(3x+1\right)^2+3\)
Vì \(\left(3x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(3x+1\right)^2+3\ge3\)
\(\Rightarrow Amin=3\Leftrightarrow x=-\dfrac{1}{3}\)
\(B=4x^2+4x+12\)
\(B=\left(2x\right)^2+2.2x+1+11\)
\(B=\left(2x+1\right)^2+11\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+1\right)^2+11\ge11\)
\(\Rightarrow Bmin=11\Leftrightarrow x=-\dfrac{1}{2}\)
\(C=x^2+x+3\)
\(C=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
\(\Rightarrow Cmin=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(D=2x^2+3x+1\)
\(D=2\left(x^2+\dfrac{3}{2}x+\dfrac{1}{2}\right)\)
\(D=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}+\dfrac{1}{2}\right)\)
\(D=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)
Vì \(2\left(x+\dfrac{3}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
\(\Rightarrow Dmin=-\dfrac{1}{8}\Leftrightarrow x=-\dfrac{3}{4}\)
\(E=64x^2+16x+3\)
\(E=\left(8x\right)^2+2.8x+1+2\)
\(E=\left(8x+1\right)^2+2\)
Vì \(\left(8x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(8x+1\right)^2+2\ge2\)
\(\Rightarrow Emin=2\Leftrightarrow x=-\dfrac{1}{8}\)
đề dài nên T giải câu a thôi bn tự làm tiếp mấy câu khác nhé
2x^2 - 2y^2 - 6x - 6y
= 2(x^2-y^2) - 6(x+ y)
= 2(x-y)(x+y) - 6(x+y)
= (2(x-y)-6) (x+y)
1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)
2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)
5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)
\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)
7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)
\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)
\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
1.(__3x_____+___1____) (9x^2-__3x____+1) = (__3x__)^3 + (__1____)^3
2.(x+__4_____) (__x\(^2\)____-___4x_____+16) = (_x___)^3 + (__4____)^3
hai câu cuối bạn có gõ sai chỗ 10x với 6x ko??? vì như thế thì ko ra đc HĐT