K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

B2 28/41 , 29/41 , 29/40

mik chỉ biết làm câu 2 thôi 

k giùm mik nha

Bài 1: So sánh các phân số sau1) \(\frac{-8}{31}\frac{-789}{3131}\)2) \(\frac{11}{2^3.3^4.5^2}\frac{29}{2^2.3^4.5^3}\)3) \(\frac{1}{n}\frac{1}{n+1}\)Bài 2: So sánh các phân số sau bằng cách hợp lí:1) \(\frac{29}{40}\frac{28}{41}\frac{29}{41}\)2) \(\frac{307}{587}\frac{317}{587}\frac{307}{588}\)3) \(\frac{179}{197}\frac{971}{917}\)4) \(\frac{183}{184}\frac{-183}{-184}\)Bài 3: Tính các tổng sau ( hợp lí nếu có thể...
Đọc tiếp

Bài 1: So sánh các phân số sau

1) \(\frac{-8}{31}\frac{-789}{3131}\)

2) \(\frac{11}{2^3.3^4.5^2}\frac{29}{2^2.3^4.5^3}\)

3) \(\frac{1}{n}\frac{1}{n+1}\)

Bài 2: So sánh các phân số sau bằng cách hợp lí:

1) \(\frac{29}{40}\frac{28}{41}\frac{29}{41}\)

2) \(\frac{307}{587}\frac{317}{587}\frac{307}{588}\)

3) \(\frac{179}{197}\frac{971}{917}\)

4) \(\frac{183}{184}\frac{-183}{-184}\)

Bài 3: Tính các tổng sau ( hợp lí nếu có thể ) 

\(A=\frac{-2}{3}+\frac{3}{4}+\frac{7}{6}+\frac{-1}{2}\)

\(B=\left(\frac{1}{4}+\frac{-5}{13}\right)+\left(\frac{2}{11}+\frac{-8}{13}+\frac{3}{4}\right)\) 

\(C=\left(\frac{21}{31}+\frac{-16}{7}\right)+\left(\frac{44}{53}+\frac{10}{31}\right)+\frac{9}{53}\)

\(D=\frac{-30303}{80808}\frac{303030}{484848}\)

Bài 4: Tìm các số nguyên x, biết

1) \(\frac{1}{3}+\frac{3}{35}<\frac{x}{210}<\frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)

2) \(\frac{5}{3}+\frac{-14}{3}\)

Bài 5:Tìm hai phân số có các mẫu bằng 9, các tử là hai số tự nhiên liên tiếp sao cho phân số \(\frac{4}{7}\) nằm giữa hai phân số đó

3
12 tháng 2 2016

toan bai de, lam duoc nhung dai qua, lam ko co noi

12 tháng 2 2016

Làm thì làm đc đó nhưng mà nhiều thế này thì ko làm nổi đâu!-_-

9 tháng 1 2017

câu a

\(\frac{28}{41},\frac{29}{41},\frac{29}{40}\)

câu b

\(\frac{307}{593},\frac{307}{587},\frac{317}{587}\)

29 tháng 1 2018

a) \(\frac{28}{41};\frac{29}{41};\frac{29}{40}\)

b) \(\frac{307}{593};\frac{307}{587};\frac{317}{587}\)

28 tháng 4 2017

bài khó nhất nhé

2. Ta có : 

\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :

\(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)

\(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

\(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

9 tháng 3 2019

câu 5đáp án là72

1/ Tìm phần nguyên x của hỗn số, biết rằng:a/ \(\frac{561}{143}< x\frac{12}{13}< \frac{1463}{247}\)                      b/ \(x\frac{3}{4}=\frac{21983}{7996}\)2/ Hãy tìm tất cả các phân số sao cho:a/ Có mẫu là 20, lớn hơn \(\frac{2}{13}\)và nhỏ hơn \(\frac{5}{13}\).b/ Có tử là 3, lớn hơn \(\frac{1}{8}\)và nhỏ hơn \(\frac{1}{7}\).c/ Lớn hơn \(\frac{5}{7}\)và nhỏ hơn \(\frac{5}{6}\).3/ Một phân số nhỏ hơn 1 tăng lên...
Đọc tiếp

1/ Tìm phần nguyên x của hỗn số, biết rằng:

a/ \(\frac{561}{143}< x\frac{12}{13}< \frac{1463}{247}\)                      b/ \(x\frac{3}{4}=\frac{21983}{7996}\)

2/ Hãy tìm tất cả các phân số sao cho:

a/ Có mẫu là 20, lớn hơn \(\frac{2}{13}\)và nhỏ hơn \(\frac{5}{13}\).

b/ Có tử là 3, lớn hơn \(\frac{1}{8}\)và nhỏ hơn \(\frac{1}{7}\).

c/ Lớn hơn \(\frac{5}{7}\)và nhỏ hơn \(\frac{5}{6}\).

3/ Một phân số nhỏ hơn 1 tăng lên hay giảm đi khi ta cộng cùng 1 số tự nhiên khác 0 vào tử và mẫu của phân số? Vì sao? (Xét trường hợp phân số lớn hơn 1).

4/ Tính tổng:

a/ \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

b/ \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

c/ \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

d/ \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

5/ Tìm x, biết:

a/ \(\left(\frac{11}{12}+\frac{11}{12.23}+\frac{11}{23.34}+...+\frac{11}{89.100}\right)+x=\frac{5}{3}\)

b/ \(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)

3
25 tháng 6 2017

Sao nhiều quá vại??

mk lm k nổi đâu

Dài quá nhìn lòi bảng họng lun ak

26 tháng 6 2017

Bài : 4 

a/ \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+....+\frac{1}{24\cdot25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b/ \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{99\cdot101}\)

\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(=\frac{100}{101}\)

c/ \(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}+\frac{5^2}{26\cdot31}\)

\(=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}+\frac{25}{26\cdot31}\)

\(=\frac{6-1}{1\cdot6}+\frac{11-6}{6\cdot11}+....+\frac{31-26}{26\cdot31}\)

\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)

\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{31}\right)\)

\(=\frac{25}{5}\cdot\frac{30}{31}\)

\(=\frac{150}{31}\)

d/ \(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{49\cdot51}\)

\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+....+\frac{51-49}{49\cdot51}\)

\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{51}\right)\)

\(=\frac{3}{2}\cdot\frac{50}{51}\)

\(=\frac{25}{17}\)

e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+\frac{1}{19\cdot25}+\frac{1}{25\cdot31}+\frac{1}{31\cdot37}\)

\(=\frac{7-1}{1\cdot7}+\frac{13-7}{7\cdot13}+....+\frac{37-31}{31\cdot37}\)

\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{31}-\frac{1}{37}\right)\)

\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)

\(=\frac{1}{6}\cdot\frac{36}{37}\)

\(=\frac{6}{37}\)

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

18 tháng 5 2021

\(a.\)

\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)

\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)

\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)

\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)

\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)

\(10A=1+\frac{9}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}\)

\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}\)

\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)

\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)

\(10B=1+\frac{9}{10^{17}+1}\)

\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)

19 tháng 5 2021

xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)

\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)

\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)

Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B

23 tháng 6 2018

trả lời giúp mình nha! mình sẽ cho  ^^

23 tháng 6 2018

11/14   12/13     15/15    33/32    34/31