Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
...
<=> 3x^5(x-3) - 4x^4(x-3) + 7x^3(x-3) - 5x^2(x-3) + 4x(x-3) - (x-3) = 0
<=> (x-3)(3x^5 - 4x^4 + 7x^3 - 5x^2 + 4x - 1) = 0
<=> (x-3)[3x^4(x-1/3) - 3x^3(x-1/3) + 6x^2(x-1/3) - 3x(x-1/3) + 3(x-1/3)] = 0
<=> (x-3)(x-1/3)(3x^4 - 3x^3 + 6x^2 - 3x + 3) = 0
<=> (x-3)(x-1/3)[3(x^4+2x^2+1) - 3x(x^2+1)] = 0
<=> (x-3)(x-1/3)(x^2+1)[3(x^2+1) - 3x] = 0
<=> 3(x-3)(x-1/3)(x^2+1)(x^2+1-x) = 0
....
a)\(6x^2+5x-6=0\)
\(\Leftrightarrow6x^2-4x+9x-6=0\)
\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
b)\(6x^2-13x+6=0\)
\(\Leftrightarrow6x^2-4x-9x+6=0\)
\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
c)\(10x^2-13x-3=0\)
\(\Leftrightarrow10x^2-15x+2x-3=0\)
\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)
d)\(20x^2+19x-3=0\)
\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)
\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)
e)\(3x^2-x+6=0\)
\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)
Suy ra vô nghiệm
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
a) x3 - 19x - 30 = 0
\(\Leftrightarrow\)x3 + 5x2 + 6x - 5x2 - 25x - 30 = 0
\(\Leftrightarrow\)(x - 5)(x2 + 5x + 6) = 0
\(\Leftrightarrow\)(x - 5)(x2 + 2x + 3x + 6) = 0
\(\Leftrightarrow\)(x - 5)(x + 2)(x + 3) = 0
\(\Leftrightarrow\)x - 5 = 0 x = 5
hoặc x + 2 = 0 \(\Leftrightarrow\) x = -2
hoặc x + 3 = 0 x = -3
Vậy x = { -3; -2; 5 }
b) x(x + 4)(x + 6)(x + 10) + 128 = 0
\(\Leftrightarrow\)(x2 + 10x)(x2 + 10x + 24) + 128 = 0
Đặt x2 + 10x = y; ta có
y(y + 24) + 128 = 0
\(\Leftrightarrow\)y2 + 24y + 144 - 16 = 0
\(\Leftrightarrow\)(y + 12)2 - 16 = 0
\(\Leftrightarrow\)(y + 12 - 4)(y + 12 + 4) = 0
\(\Leftrightarrow\)(y + 8)(y + 16) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}y+8=0\\y+16=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=-8\\y=-16\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2+10x=-8\\x^2+10x=-16\end{cases}}\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )