\(\Delta ABC\) có AC=35cm, \(\widehat{B}=60^o\) ,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

(K đăng hình đc nên hình tự vẽ)

Kẻ \(AH\perp BC\left(H\in BC\right)\)

• Xét \(\Delta HAC\) vuông tại \(H\)

\(\sin C=\dfrac{AH}{AC}\Rightarrow AH=\sin50^o.35\approx26,81\left(cm\right)\)

\(\cos C=\dfrac{HC}{AC}\Rightarrow HC=\cos50^o.35\approx22,5\left(cm\right)\)

• Xét \(\Delta HAB\) vuông tại \(H\)

\(\tan B=\dfrac{AH}{BH}\Rightarrow BH\approx\dfrac{26,81}{\tan60^o}\approx15,48\left(cm\right)\)

\(\cos B=\dfrac{AH}{AB}\Rightarrow AB\approx\dfrac{26,81}{\cos60^o}\approx53,62\left(cm\right)\)

*Khi đó chu vi \(\Delta ABC\) bằng \(AB+BC+AC\)

\(\approx53,62+\left(22,5+15,48\right)+35\)

\(\approx192,48\left(cm\right)\)

*Khi đó \(S_{\Delta ABC}=\dfrac{AH.BC}{2}\approx\dfrac{26,81.\left(22,5+15,48\right)}{2}\approx509,12\left(cm^2\right)\)

#F.C

20 tháng 10 2022

a: Xét ΔAHB vuông tại H có sin B=AH/AB

nên AB=5,96(cm)

=>BH=2,52(cm)

Xét ΔAHC vuông tại H có sin C=AH/AC

nên AC=7,05(cm)

=>HC=4,53(cm)

BC=2,52+4,53=7,05(cm)

C=7,05+7,05+5,96=20,06(cm)

b: góc A=180-58-40=82 độ

Xét ΔBHA vuông tại H có tan A=BH/HA

nên HA=0,56(cm)

Xét ΔBHC vuông tại H có tan C=BH/HC

nên HC=4,77(cm)

=>AC=5,33(cm)

\(S_{ABC}=\dfrac{5.33\cdot4}{2}=10.66\left(cm^2\right)\)

21 tháng 7 2017

A B C H

trong tam giac AHC co \(AH=AC\cdot\sin C=35\cdot\sin50\approx26,8\)

ap dung dl pitago vao AHC  ta tinh dc \(HC=AC^2-AH^2\approx22,5\)

tg tu trong tam giac ABH co \(BH=\cot60\cdot26,8\approx15,5\)

\(\Rightarrow BC=BH+CH=38\)

\(\Rightarrow SABC=\frac{1}{2}BC\cdot AH=509,2\)

17 tháng 2 2022

\(\widehat{BAC}=60^0\Rightarrow\widehat{BOC}=120^0\)

\(BC=\sqrt{2R^2-2R^2.\cos120^0}=R\sqrt{3}=2\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.3.2\sqrt{3}=3\sqrt{3}\left(cm^2\right)\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

Lời giải:

a) Xét tam giác vuông $AHB$ vuông tại $H$ ta có:

\(\tan \widehat{ABH}=\frac{AH}{HB}\Leftrightarrow \frac{\sqrt{3}}{3}=\tan 30^0=\frac{AH}{BH}\)

\(\Leftrightarrow AH=\frac{\sqrt{3}BH}{3}=2\sqrt{3}\) (cm)

Xét tam giác $ACH$ vuông tại $H$ ta có:

\(\sin \widehat{ACH}=\frac{AH}{AC}\Leftrightarrow AC=\frac{AH}{\sin 50^0}=\frac{2\sqrt{3}}{\sin 50^0}\) (cm)

b)

Ta có: \(\tan \widehat{ACH}=\frac{AH}{CH}\Leftrightarrow CH=\frac{AH}{\tan \widehat{ACH}}=\frac{2\sqrt{3}}{\tan 50^0}\) (cm)

\(S_{ACH}=\frac{AH.CH}{2}=\frac{2\sqrt{3}.2\sqrt{3}}{2\tan 50}=\frac{6}{\tan 50}\) (cm2 )

\(C_{ACH}=AC+CH+AH=\frac{2\sqrt{3}}{\sin 50}+\frac{2\sqrt{3}}{\tan 50}+2\sqrt{3}\approx 10,9\) (cm)

9 tháng 7 2019

A B C H

Vẽ BH vuông góc với AC

Theo định lý Pythagore, ta có:

BC2=BH2+CH2=BH2+(AC-AH)2

=BH2+AH2+AC2-2AC.AH

Mà ta lại có:AH2+BH2=AB2 (định lý Pythagore, tam giác ABH vuông tại H) 

và AH=1/2AB (do tam giác ABH là nửa tam giác đều)

Cho nên: BC2=AB2+AC2-2.1/2AB.AC=AB2+AC2-AB.AC (*)

Thay AB=28cm, AC=35cm vào (*), ta được:

BC2=1029=>BC=7\(\sqrt{21}\)cm

Vậy BC=7\(\sqrt{21}\)cm