Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
a: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-72^0}{2}=54^0\)
nên \(\widehat{AKC}=126^0\)
c: Vì Am và AK là hai tia phân giác của hai góc kề bù
nên Am⊥AK
Vì Cn và CK là hai tia phân giác của hai góc kề bù
nên Cn⊥CK
e: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-x}{2}\)
\(\Leftrightarrow\widehat{AKC}=\dfrac{360^0-180^0+x}{2}=\dfrac{180^0+x}{2}\)
5A=3B=15C
\(\frac{15}{3}\)A=\(\frac{15}{5}\)B=15C
\(\frac{A}{3}\)=\(\frac{B}{5}\)=\(C\)=\(\frac{A+B+C}{3+5+1}\)=\(\frac{180}{9}\)=20
A=60 , B=100, C=20
b, Bạn tự vẽ hình nha p/g góc A nên BAD=30
Xét tam giác ABD có BAD+ABD+ADB=180
30+ 100+ADB=180
ABD=50
Phải là \(5\widehat{A}=3\widehat{B}=15\widehat{C}\) mới đúng
a) Vì \(5\widehat{A}=3\widehat{B}=15\widehat{C}\)(gt) nên
\(\frac{5\widehat{A}}{15}=\frac{3\widehat{B}}{15}=\frac{15\widehat{C}}{15}\) hay \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{5}=\frac{\widehat{C}}{1}\)
Vì \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)và theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{5}=\frac{\widehat{C}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+1}=\frac{180^0}{9}=20^0\)
Vậy \(\widehat{A}=20^0\cdot3=60^0,\widehat{B}=20^0\cdot5=100^0,\widehat{C}=20^0\)
b) Xét \(\Delta BAD\)theo đinh lí tổng ba góc trong một tam giác ta có :
\(\widehat{B}+\widehat{A_2}+\widehat{ADB}=180^0\)
Vì AD là tia phân giác của \(\widehat{A}\)=> \(\widehat{A}_1=\widehat{A_2}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
Mà \(\widehat{B}=100^0\)=> \(100^0+30^0+\widehat{ADB}=180^0\)
=> \(130^0+\widehat{ADB}=180^0\)
=> \(\widehat{ADB}=50^0\).