Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình Bé tự vẽ nhé :v
a,
Xét tg BAE và tg BEK có:
+) Góc (BEA)= góc (BKE)
+) Góc (EBA)= góc (EBK)
+ BE chung
=> hai tg trên bằng nhau.
=> BA=BK
=> Tg BAK cân tại B
b,
Xét tg (BAD) và tg (BKD) có:
+) BA=BK ( cmt )
+) Góc (ABD)= góc (DBK)
+) BD chung
=> Hai tg này bằng nhau
=> Góc (BAD)= Góc (BKD)
Mà Góc (BAD)=90 độ => BKD =90 độ
=> DK vuông góc với BC
chỉ cần giải cho mình câu c,d thôi nha !!!
A - ri - ga - to ^-^
a) Ta có : AB vuông góc với AC
HK vuông góc với AC
AB // HK
b) ΔHAK=ΔHAI(c.g.c)(HA chung; HK = HI; AHKˆ=AHIˆ=900)
AK = AI Tam giác AKI cân tại A
c) Theo b : AIKˆ=AKIˆ
Mà BAKˆ=AKIˆ (cặp góc so le trong, AB // HK)
Từ 2 điều trên suy ra : BAKˆ=AIKˆ(=AKIˆ)
d) Tam giác IAK cân tại A có AH là đường cao ứng với đáy KI nên AH là đường phân giác xuất phát từ đỉnh A của tam giác AKI.
KACˆ=IACˆ
ΔAIC=ΔAKC(c.g.c) (AC chung; AK = AI (theo b); KACˆ=IACˆ(cmt))
1 đúng nhé
a) ta có :AB vuông góc AC
HK vuông góc AC
b) Xét tam giác AKH và tam giác AHI
AH là cạnh chung
H1 = H2
IH=HK (gt)
suy ra 2 tam giác trên bằng nhau
suy ra KA=AI
K^=I^
Vì KA=AI mà K = I nên tam giác KAI LÀ tam giác cân . Cân tại A
a: AB\(\perp\)AC
IK\(\perp\)AC
Do đó:AB//IK
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
c: Ta có: ΔAKI cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác của góc IAK
Ta có: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{HAI}=90^0\)
mà \(\widehat{HAK}=\widehat{HAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
d: Xét ΔCIK có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCIK cân tại C
Xét ΔAIC và ΔAKC có
AI=AK
IC=KC
AC chung
Do đó: ΔAIC=ΔAKC
Vẽ ΔMBC đều sao cho M nằm cùng phía với A so với BC
=>góc MBC=60 độ
=>góc MBA=10 độ
Xét ΔMAB và ΔMAC có
MA chung
AB=AC
MB=MC
Do đó: ΔMAB=ΔMAC
=>góc BMA=góc CMA=30 độ
Xét ΔBMA và ΔBCK có
góc MBA=góc KBC
MB=MC
góc BMA=góc KCB
Do đó: ΔBMA=ΔBCK
=>BA=BK
=>ΔBAK cân tại B
góc BAK=góc BKA=(180-40)/2=70 độ
Ta có:\(\widehat{BAK}+\widehat{KAC}=90^o\)
Xét ΔKAC ta có:
\(\widehat{KAC}+\widehat{KCA}+\widehat{AKC}=180^o\\ \Rightarrow90^o+\widehat{KAC}+\widehat{KCA}=180^o\\ \Rightarrow\widehat{KAC}+\widehat{KCA}=90^o\)
\(\Rightarrow\widehat{BAK}=\widehat{KCA}\)