Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2}{1x3}+\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{21x23}\)
\(A=2x\left(\dfrac{1}{1x3}+\dfrac{1}{3x5}+\dfrac{1}{5x7}+...+\dfrac{1}{21x23}\right)\)
\(A=2x\dfrac{1}{2}x\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{21}-\dfrac{1}{23}\right)\)
\(A=1-\dfrac{1}{23}\)
\(A=\dfrac{22}{23}\)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(B=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+\dfrac{1}{5x6}+\dfrac{1}{6x7}+\dfrac{1}{7x8}+\dfrac{1}{8x9}+\dfrac{1}{9x10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{10}\)
\(B=\dfrac{5}{10}-\dfrac{1}{10}\)
\(B=\dfrac{4}{10}\)
\(B=\dfrac{2}{5}\)
\(\dfrac{2}{28}+\dfrac{2}{70}+\dfrac{2}{130}+....+\dfrac{2}{700}\)
\(=\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+\dfrac{2}{10\times13}+...+\dfrac{2}{25\times28}\)
\(=\dfrac{2}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{25\times28}\right)\)
\(=\dfrac{2}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{2}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=\dfrac{2}{3}\times\dfrac{6}{28}\)
\(=\dfrac{2}{14}\)
\(=\dfrac{1}{7}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}\)
\(=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+\frac{1}{10\times13}+\frac{1}{13\times16}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(=1-\frac{1}{16}=\frac{15}{16}\)
Chúc bạn học tốt ^^
1+100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000=1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+\dfrac{3}{208}+\dfrac{3}{304}\\ =\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}\\ =1-\dfrac{1}{19}=\dfrac{18}{19}\)
\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+\dfrac{3}{208}+\dfrac{3}{304}\)
\(=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+\dfrac{3}{13\times16}+\dfrac{3}{16\times19}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}\)
\(=1-\dfrac{1}{19}\)
=\(\dfrac{18}{19}\)
a) \(\dfrac{6}{13}:\left(\dfrac{1}{2}-x\right)=\dfrac{15}{39}\)
\(\dfrac{1}{2}-x=\dfrac{6}{13}:\dfrac{15}{39}\)
\(\dfrac{1}{2}-x=\dfrac{6}{5}\)
\(x=\dfrac{1}{2}-\dfrac{6}{5}\)
\(x=-\dfrac{7}{10}\)
b) \(3\times\left(\dfrac{x}{4}+\dfrac{x}{28}+\dfrac{x}{70}+\dfrac{x}{130}\right)=\dfrac{60}{13}\)
\(3\times x\times\left(\dfrac{1}{4}+\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}\right)=\dfrac{60}{13}\)
\(x\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{7\times13}\right)=\dfrac{60}{13}\)
\(x\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}\right)=\dfrac{60}{13}\)
\(x\times\left(1-\dfrac{1}{13}\right)=\dfrac{60}{13}\)
\(x\times\dfrac{12}{13}=\dfrac{60}{13}\)
\(x=\dfrac{60}{13}:\dfrac{12}{13}\)
\(x=5\)
A=\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
A= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
A= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\)
A= 1 - \(\frac{1}{19}\)
A= \(\frac{18}{19}\)
X=3/4+3/28+...+3/304
X=3/1x4+3/4x7+....+3/13x16
X=1-1/4+1/4-1/7+....+1/13-1/16
X=1-1/16
X=15/16
k cho tớ nha Nguyễn Thu Trang