Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{9}\right)>\dfrac{1}{9}.6=\dfrac{6}{9}>\dfrac{1}{2}\) (1)
\(\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}\right)>\dfrac{1}{19}.10=\dfrac{10}{19}>\dfrac{1}{2}\) (2)
\(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{19}>\left(1\right)+\left(2\right)\)
\(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{19}>1\left(đpcm\right)\)
Ta có ababab = 10101 x ab mà 10101 chia hết cho 1443 (10101=1443x70) nên 1443 là ước của số có dạng ababab.
Vì abba là bội của 11 nên abba chia hết cho 11
Theo công thức:(a+b)-(b+a)=0
Mà 0 chia hết cho 11
Vậy...
học tốt
\(A=1+2+2^2+2^3+...+2^{11}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(A=3+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(A=3+2^2.3+...+2^{10}.3\)
\(A=3\left(1+2^2+...+2^{10}\right)\)
\(\Rightarrow A⋮3\)
Vậy \(A⋮3\)
!!!
Gọi d=ƯCLN(2n+3;7n+10)
=>2n+3 chia hết cho d và 7n+10 chia hết cho d
=>14n+21 chia hết cho d và 14n+20 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+3 và 7n+10 là hai số nguyên tố cùng nhau
bn tìm theo chữ số tận cùng,dấu hiệu chia hết của số chính phương
Tổng các chữ số của B là 45.
45 chia hết cho 5 nhưng ko chia hết cho 25
=> B chia hết cho 5 nhưng ko chia hết cho 25
=> B không là số chính phương.