K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2022

B = ( 2 + 4 + 6 +.....+ 2020) - ( 1+3 +5+.....+2019)

B = (2+2020){ (2020-2):2+1)}:2 - (2019+ 1){ (2019 -1):2+1)}:2

B =1021110 - 1020100

B = 1010

22 tháng 8 2022

B = 1010

3 tháng 8 2023

Ok em, để olm.vn giúp em nhá: 

A = \(\dfrac{1}{2}\):3 + \(\dfrac{1}{3}\):4 + \(\dfrac{1}{4}\):5+...+\(\dfrac{1}{2018}\):2019 + \(\dfrac{1}{2019}\): 2020

A=\(\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+\dfrac{1}{4}\times\dfrac{1}{5}+..+\dfrac{1}{2018}\times\dfrac{1}{2019}+\dfrac{1}{2019}\times\dfrac{1}{2020}\)

A = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+....+ \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\)\(\dfrac{1}{2019}\) - \(\dfrac{1}{2020}\)

A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2020}\)

A = \(\dfrac{1009}{2020}\)

3 tháng 8 2023

Giúp mình nhé 

 

10 tháng 9 2020

Nhanh giúp mk nhé!

Cần gấp lắm!

số lượng số hạng của dãy số là 

    (  2021 - 2  ) : 1 + 1 = 2020 

tổng của dãy số là 

  ( 2021 + 2) x 2020 : 2 = 2043230

                                     vậy A = \(\frac{1}{2043230}\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

11 tháng 6 2021

(2+4+6+...+100).(36.333−108.111)=(2+4+6+...+100).(36.333−108.111)=(2+4+6+...+100).(36.3.111−36.3.111)(2+4+6+...+100).(36.3.111−36.3.111)=(2+4+6+...+100).0=(2+4+6+...+100).0=0

= 0 NHÉ BẠN

\(F=1\dfrac{1}{5}\times1\dfrac{1}{6}\times1\dfrac{1}{7}\times\cdot\cdot\cdot\times1\dfrac{1}{2019}\times1\dfrac{1}{2020}\)

 

\(F=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times\cdot\cdot\cdot\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)

 

\(F=\dfrac{6\times7\times8\times\cdot\cdot\cdot\times2020\times2021}{5\times6\times7\times\cdot\cdot\cdot\times2019\times2020}\)

 

\(F=\dfrac{2021}{5}\)

\(Huyền\)
15 tháng 5 2022

\(f=1^1_5\times1^1_6\times1^1_7\times......\times1^1_{2019}\times1^1_{2022}\)

\(f=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times....\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)

\(f=\dfrac{6\times7\times8\times....\times2020\times2021}{5\times6\times7\times.....\times2019\times2020}\)

\(f=\dfrac{2021}{5}\)

\(#Tarus\)

1 tháng 6 2020

Cácbạn ghi rõ lời giải giúp mình nhé.

Thanks các bạn!

1 tháng 6 2020

ta có 1/2*2/3*...*2019/2020

=1*2*3*...*2019/2*3*4*..*2020

=1/2020 (rút gọn các số giống nhau)

2 tháng 6 2018

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

2 tháng 6 2018

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)