Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
Bài 1: Tìm x, y nguyên biết :
a) 4x + 2xy + y = 7
=> 2.x(y-2)+(y-2)=5
=> ( y-2)(2x+1)= 5
Ta có bảng sau:
2x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | 1 | -3 | 7 | 3 |
Điều kiện: t/m
Vậy:....
phần b và c tương tự
1, xy+2x-2y-5=0
=> x.( y+2)-2.(y+2)=5
=> (y+2).(x-2)=5
Vì x, y thuộc Z => y+2; x-2 thuộc Z
Mà 5=1.5=-1.(-5) và hoán vị của chúng
Ta có bảng sau:
y+2 1 5 -1 -5
x-2 5 1 -5 -1
y -1 3 -3 -7
x 7 3 -3 1
nHỚ K CHO MIK NHÉ
a) xy + x + 2y = 5
=> (xy + x) + 2y + 2 = 7
=> x(y + 1) + 2(y + 1) = 7
=> (x + 2)(y + 1) = 7
=. x + 2 \(\in\) (7) = {-1; -7; 1; 7}
Ta có bảng sau:
x + 2 | -1 | 1 | -7 | 7 |
x | -3 | -1 | -9 | 5 |
y + 1 | -7 | 7 | -1 | 1 |
y | -8 | 6 | -2 | 0 |
Vậy (x; y) \(\in\){(-3; -8); (-1; 6); (-9; -2); (5; 0)}
a) <=> (xy+x) + 2y + 2 = 7
=> x(y+1) + 2(y+1) = 7
=> (x+2)(y+1) = 7
Vì x nguyên => x+2 \(\in\) Ư(7)= {7;-7;1;-1}
Ta có bảng sau:
x+2 | 7 | -7 | 1 | -1 |
x | 5 | -9 | -1 | -3 |
y+1 | 1 | -1 | 7 | -7 |
y | 0 | -2 | 6 | -8 |
Vậy (x;y) = (5;0); (-9;-2) ; (-1;6); (-3;-8)
1)\(y=\frac{x^2+3x+7}{x+3}=\frac{x\left(x+3\right)+7}{x+3}=x+\frac{7}{x+3}\)= > x +3 thuoc\(U_{\left(7\right)}=\left\{1;-1;7;-7\right\}\)
x thuoc \(\left\{-2;-4;3;-11\right\}\)
2)\(y=\frac{4x+3}{2x+6}=\frac{4x+12-8}{2x+6}=\frac{2\left(2x+6\right)-8}{2x+6}=2-\frac{8}{2x+6}\) =>2x+6 thuoc
\(U_{\left(8\right)}=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>x thuoc \(\left\{-2;-4;-1;-5;1;-7\right\}\)
4)\(y=\frac{4x+1}{3x-1}\)
\(3y=\frac{12x+3}{3x-1}=\frac{12x-4+7}{3x-1}=\frac{4\left(3x-1\right)+7}{3x-1}=4+\frac{7}{3x-1}\)
3x+1 thuoc {1;-1;7;-7}
3x thuoc {0;-2;6;-8}
x thuoc {0;2}
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a