K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

24 tháng 2 2019

Nguyễn TrươngNguyễn Việt LâmNguyenTruong Viet TruongKhôi BùiAkai HarumaÁnh LêDƯƠNG PHAN KHÁNH DƯƠNGPhùng Tuệ Minhsaint suppapong udomkaewkanjana

4 tháng 3 2019

Unruly KidAkai HarumaNguyễn Thanh HằngLê Anh DuyKhôi BùiNguyễn Việt LâmNguyễn TrươngDũng NguyễnNguyenTRẦN MINH HOÀNG

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Câu a:

\((x^2+x)^2+4(x^2+x)=12\)

\(\Leftrightarrow (x^2+x)^2+4(x^2+x)+4=16\)

\(\Leftrightarrow (x^2+x+2)^2=16\)

\(\Rightarrow \left[\begin{matrix} x^2+x+2=4\\ x^2+x+2=-4\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2+x-2=0\\ x^2+x+6=0\end{matrix}\right.\)

Với \(x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)

Với \(x^2+x+6=0\Leftrightarrow (x^2+x+\frac{1}{4})+\frac{23}{4}=0\)

\(\Leftrightarrow (x+\frac{1}{2})^2=\frac{-23}{4}<0\) (vô lý- loại)

Vậy \(x\in \left\{-2;1\right\}\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Câu b:

\(x(x-1)(x+1)(x+2)=24\)

\(\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24\)

\(\Leftrightarrow (x^2+x)(x^2+x-2)=24\)

\(\Leftrightarrow a(a-2)=24\) (đặt \(x^2+x=a\) )

\(\Leftrightarrow a^2-2a-24=0\)

\(\Leftrightarrow (a-6)(a+4)=0\Rightarrow \left[\begin{matrix} a-6=0\\ a+4=0\end{matrix}\right.\)

Nếu \(a-6=0\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

Nếu \(a+4=0\Leftrightarrow x^2+x+4=0\Leftrightarrow (x+\frac{1}{2})^2=\frac{-15}{4}<0\) (vô lý)

Vậy............

2 tháng 3 2019

\(a)\left(x^2+x\right)^2+4\left(x^2+x\right)=12\\ \Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)

Đặt \(t=x^2+x\left(t\ge0\right)\)

\(\Leftrightarrow t^2+4t-12=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

Với \(t=2\Rightarrow x^2+x=2\Rightarrow x^2-x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với \(t=-6\Rightarrow x^2+x=-6\Rightarrow x^2+x+6=0\Rightarrow x\notin\){\mathbb  {R}}

Vậy...

28 tháng 9 2019

1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x=t\)

\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)

\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)

Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)

\(\Delta=7^2-4.11=5\)

\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)

28 tháng 9 2019

2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)

\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)

Đặt \(x^2-8x=t\)

\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)

\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)

Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)

\(\Delta=\left(-8\right)^2-4.11=20\)

\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)

a: \(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x^2-18=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

=>x=-6 hoặc x=1

b: \(x^4+3x^2-4=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)

=>x=1 hoặc x=-1

 

 

 

12 tháng 11 2018

b​; x(x-1)(x+1)(x+2)-24

=(x2+x)(x2+x-2)-24

Đ​ặt x2​+x=k khi đ​ó​ k(k-2)-24=k2-2k-24

​=(k2-2k+1)-25=(k-1)2-52

​ =(k-1-5)(k-1+5)=(k-6)(k+4)

c; (x+2)(x-2)(x2-10)-72

​ =(x2-4)(x2-10)-72

Đ​ặt x2​-7=k khi đ​ó​ (k-3)(k+3)-72=k2-9-72

=k2-81=(k-9)(k+9)=(x2-7-9)(x2-7+9)

=(x2-16)(x​2+2)=(x-4)(x+4)(x2+2)

d; (x-7)(x-5)(x-4)(x-2)-72

=(x2-9x+14)(x2-9x+8)-72

Đ​ặt x2-9x​+11=k khi đ​ó​ (k+3)(k-3)-72=k2-9-72

=k2-81=(k-9)(k+9)=(x2-9x+11-9)(x2-9x+11+9)

=(x2-9x+2)(x2-9x+20)

=(x2-9x+2)(x2-4x-5x​+20)

=(x2-9x+2)(x-4)(x-5)