K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

a, \(\dfrac{x+1}{8}=\dfrac{16}{2\left(x+1\right)}\)
<=> \(\dfrac{2.\left(x+1\right)^2}{16\left(x+1\right)}-\dfrac{128}{16\left(x+1\right)}=0\)
=> \(2x^2+4x-126=0\)
giải tìm nghiệm

2 tháng 3 2020
https://i.imgur.com/gxCqrM4.jpg
15 tháng 10 2018

xin lỗi các bạn là toán lớp 7 nha mình chân thành xin lỗi

17 tháng 10 2022

a: =>(x-5)^3+1/16=31/64

=>(x-5)^3=31/64-4/64=27/64

=>x-5=3/4

=>x=5,75

b: =>x-2,5=2/3 hoặc x-5/2=-2/3

=>x=19/6 hoặc x=11/6

c: =>\(5\cdot2^x-2^x=384\)

=>2^x*4=384

=>2^x=96

hay \(x\in\varnothing\)

d: =>x+2=4

=>x=2

10 tháng 11 2021

\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

10 tháng 11 2021

GHI RÕ DÙM MÌNH ĐK CỦA CẢ 3 CÂU LUÔN ĐC KO Á.

13 tháng 3 2020

\(1,\left|2x-3\right|=x-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-5\ge0\\\left[{}\begin{matrix}2x-3=x-5\\2x-3=-x+5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}5\\\left[{}\begin{matrix}x=-2\\x=\frac{8}{3}\end{matrix}\right.\end{matrix}\right.\) (ko thỏa mãn)

=> pt vô nghiệm

\(2,\left|3x+2\right|=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}3x+2=x+1\\3x+2=-x-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\)

\(3,\left|2x+1\right|=7-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}7-x\text{≥}0\\\left[{}\begin{matrix}2x+1=7-x\\2x+1=x-7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}7\\\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\end{matrix}\right.\) (loại)

=> pt vô nghiệm

\(4,\left|2x-5\right|=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}2x-5=x+1\\2x-5=-x-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\)

\(5,\left|6x-2\right|=3x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-4\text{≥}0\\\left[{}\begin{matrix}6x-2=3x-4\\6x-2=-3x+4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}\frac{4}{3}\\\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(6,\left|3x-2\right|=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\text{≥}0\\\left[{}\begin{matrix}3x-2=x-2\\3x-2=-x+2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}2\\\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(7,\left|2x+3\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

\(8,\left|2-x\right|=2x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\\left[{}\begin{matrix}2-x=2x-1\\2-x=-2x+1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\)

\(9,\left|2x-1\right|=x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\\left[{}\begin{matrix}2x-1=x-3\\2x-1=-x+3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\\left[{}\begin{matrix}x=-2\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(10,2\left|x-1\right|=x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2\ge0\\\left[{}\begin{matrix}2x-2=x+2\\2x-2=-x-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

NV
17 tháng 9 2019

a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)

\(\Leftrightarrow x^2+2x-15=x^2-9\)

\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)

Vậy pt vô nghiệm

b/ ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)

\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)

c/ ĐKXĐ: \(x\ne\pm4\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2+16=5x^2+2x\)

\(\Rightarrow x=8\)