Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 24-x=32=25
=> 4-x=5
<=> x=-1
b, (x+1,5)2+(y-2,5)10=0
Vì (x+1,5)2\(\ge\)0, (y-2,5)10\(\ge\)0
\(\Rightarrow\hept{\begin{cases}x+1,5=0\\y-2,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)
a)\(2^{4-x}\)=32
=>\(2^{4-x}\)=32=\(2^5\)
=>4-x=5
=>x=4-5=-1
=>x=-1
a) \(\dfrac{x}{48}=-\dfrac{4}{7}\Rightarrow x=-\dfrac{192}{7}\)
b) \(\left(x+\dfrac{4}{5}\right)-\dfrac{2}{5}=\dfrac{3}{5}\Rightarrow x+\dfrac{4}{5}=1\)
\(\Rightarrow x=\dfrac{1}{5}\)
c) \(2\left|x-1\right|^2=72\Rightarrow\left|x-1\right|^2=36\)
\(\Rightarrow\left|x-1\right|=6\)
TH1: x - 1 = -6 => x = -5
TH2: x - 1 = 6 => x = 7
e) \(\dfrac{x}{2,5}=\dfrac{4}{5}\Rightarrow x=2\)
f) | x - 2 | = 1 + 4 = 5
TH1: x - 2 = -5 => x = -3
TH2: x - 2 = 5 => x = 7
a) \(\dfrac{x}{48}=\dfrac{-4}{7}\)
⇒ x.7=48.(-4)
7x = -192
x=\(\dfrac{-192}{7}\) Vậy x=\(\dfrac{-192}{7}\)
b) \(\left(x+\dfrac{4}{5}\right)-\dfrac{2}{5}=\dfrac{3}{5}\)
\(\left(x+\dfrac{4}{5}\right)=\dfrac{3}{5}+\dfrac{2}{5}\)
\(x+\dfrac{4}{5}=1\)
\(x=1-\dfrac{4}{5}\)
\(x=\dfrac{1}{5}\)
c) chưa từng gặp dạng với giá trị tuyệt đối sory
d) \(\dfrac{1}{6}x-\dfrac{2}{3}=2\)
\(\dfrac{1}{6}x=2+\dfrac{2}{3}\)
\(\dfrac{1}{6}x=\dfrac{8}{3}\)
\(x=\dfrac{8}{3}:\dfrac{1}{6}\)
\(x=16\)
e) \(\dfrac{x}{2,5}=\dfrac{4}{5}\)
=> x.5 = 4.2,5
5x=10
x=10:5
x=2
f) |x-2|-4=1
|x-2|=1+4
|x-2|=5
=>\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=5+2\\x=-5+2\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
đôi khi cũng có sai sót , hãy xem lại thật kĩ
Dạng 1:
a: =>x(x-3)=0
=>x=3 hoặc x=0
b: =>x(3x-4)=0
=>x=4/3 hoặc x=0
c: =>2x-1=0
=>x=1/2
d: =>2x(2x+3)=0
=>x=0 hoặc x=-3/2
e: =>x(2x+5)=0
=>x=-5/2 hoặc x=0
e, \(x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)
đặt 80=x+1 ta đc
\(x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15=x+15=79+15=94\)
Bài 1:
\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)
\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)
\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)
\(B=x^8.y^7.\frac{2}{3}\)
Bài 2:
\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)
\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)
B tương tự nhé, đáp án là (theo mình)
\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
`@` `\text {Ans}`
`\downarrow`
`B(x)-A(x)+C(x)`
`=`\((x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15) + 3x^3 - 7x^2 -4\)
`=`\(x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)
`=`\(\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)+\left(-4x-2x\right)+\left(7+15-4\right)\)
`=`\(-x^3-13x^2-6x+18\)
`C(x)-B(x)-A(x)`
`=`\(3x^3 - 7x^2 -4 - (x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15)\)
`=`\(3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)
`=`\(\left(3x^3+5x^3+x^3\right)+\left(-7x^2-x^2-7x^2\right)+\left(4x-2x\right)+\left(-4-7+15\right)\)
`=`\(9x^3-15x^2+2x+4\)
a) \(B\left(x\right)-A\left(x\right)+C\left(x\right)\)
\(=\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)+\left(3x^3-7x^2-4\right)\)
\(=x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)
\(=\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)-\left(4x+2x\right)+\left(7-4+15\right)\)
\(=-x^3-13x^2-6x+18\)
b) \(C\left(x\right)-B\left(x\right)-A\left(x\right)\)
\(=\left(3x^3-7x^2-4\right)-\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)\)
\(=3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)
\(=\left(3x^3+5x^3+x^3\right)-\left(7x^2+x^2+7x^2\right)+\left(4x-2x\right)-\left(4+7-15\right)\)
\(=9x^3-15x^2+2x+4\)