K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

( x-3)(2y+1) = 7 

=> \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=>\(\hept{\begin{cases}x=4\\y=3\end{cases}}\)

=> \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\)

b, xy + 3x - 7y = 21 

=> x(y+3) - 7y - 21 = 0 

=> x(y+3) - 7(y+3) = 0 

=> (x-7)(y+3) = 0 

=> \(\orbr{\begin{cases}x-7=0\\y+3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=7\\y=-3\end{cases}}\)

1 tháng 8 2020

b) \(\hept{\begin{cases}xy+x+1=7y\left(1\right)\\x^2y^2+xy+1=13y^2=1\left(2\right)\end{cases}}\)

từ (2) ta có y khác 0 do đó

hệ trở thành \(\hept{\begin{cases}x+\frac{x}{y}+\frac{1}{y}=7\\x^2+\frac{x}{y}+\frac{1}{y^2}=13\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{y}\right)+\frac{x}{y}=7\\\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=13\end{cases}}}\)

đặt a=\(x+\frac{1}{y};b=\frac{x}{y}\)

hệ viết được dưới dạng \(\hept{\begin{cases}a+b=7\\a^2-b=13\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=17\\a^2+a-20=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-5\\b=12\end{cases}}}\)hay \(\hept{\begin{cases}a=4\\b=3\end{cases}}\)

với a=-5; b=12 ta được \(\hept{\begin{cases}x+\frac{1}{y}=5\\x\cdot\frac{1}{y}=12\end{cases}}\)

(x,\(\frac{1}{y}\)là nghiệm phương trình t2+5t+12=0, vô nghiệm)

với a=4, b=3 ta được \(\hept{\begin{cases}x+\frac{1}{y}=4\\x\cdot\frac{1}{y}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)hoặc \(\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)

vậy hệ đã cho 2 nghiệm (x;y)=(3;1);(\(\left(1;\frac{1}{3}\right)\)

1 tháng 8 2020

a) điều kiện x\(\ne\)1 phương trình đã cho

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3\frac{x^2}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-1=-8\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^3+\frac{3x^2}{x-1}-1=\left(-2\right)^3\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}-1\right)^3=\left(-2\right)^3\Leftrightarrow\frac{x^2}{x-1}=-2\)

\(\Leftrightarrow\frac{x^2}{x-1}+1=0\Leftrightarrow x^2+x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)(thỏa mãn)

vậy x=\(\frac{1\pm\sqrt{5}}{2}\)là nghiệm của phương trình

30 tháng 12 2016

0Thay y , z vào biểu thức A , ta có :

A = 3x + 2.(x - 3) + 5.(x - 4)

A = 3x + 2x - 6 + 5x - 20

A = 10x - 26 

25 tháng 1 2019

(2x-1)(y+2)=-10

=> (2x-1),(y+2)€ Ư(-10)

(2x-1),(y+2)€ {-1;1;2;-2;5;-5;10;-10}

mà (2x-1) là số lẻ

nên (2x-1)€ {-1;1;5;-5}

với 2x-1=-1 thì y+2=10

      2x= 0.         y=10-2

       x=0.            y=8

với 2x-1=1 thì y+2=-10

        2x=2.       y=-10-2

          x=1.       y=-12

với 2x-1=5 thì y+2=-2

      2x=6.         y=-2-2

        x=3.         y=-4

với 2x-1=-5 thì y+2=2

       2x=-4.    thì y=2-2

         x=-2.          y=0

20 tháng 5 2019

\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)

Dấu " = " xảy ra <=> a=b=c=1/4  ( cái này bạn tự giải rõ nhé)

20 tháng 5 2019

:D. cái gì đây

12 tháng 1 2017

bạn ko nên đặt những câu hỏi linh tinh

12 tháng 1 2017

Có linh tinh chi đâu

18 tháng 8 2016

ơ tớ biết rùi xin lỗi phải làm phiền các bạn Ta co: x>= 2y => x- 2y >= 0 
M=x^2/xy+y^2/xy Dk xy khac 0 
M= x/y + y/x 
2M= 2x/y + 2y/x 
2M= 2.x/y + (-x +2y+x)/x 
2M= 2. (x-2y)/y + 2.2y/x - (x-2y)/x+x/x => 2M=2(x-2y)/y -(x-2y)/x +5 
Vi x-2y>=0=>2(x-2y)/y -(x-2y)/x +5>=5 
=> 2M>=5 
=> M>5/2 
vay GTNN cua M=5/2 
cho 5*

các bạn tịks cho minh nha

18 tháng 8 2016

Ta co: x>= 2y => x- 2y >= 0 
M=x^2/xy+y^2/xy Dk xy khac 0 
M= x/y + y/x 
2M= 2x/y + 2y/x 
2M= 2.x/y + (-x +2y+x)/x 
2M= 2. (x-2y)/y + 2.2y/x - (x-2y)/x+x/x => 2M=2(x-2y)/y -(x-2y)/x +5 
Vi x-2y>=0=>2(x-2y)/y -(x-2y)/x +5>=5 
=> 2M>=5 
=> M>5/2 
vay GTNN cua M=5/2 
cho 5*

20 tháng 11 2017

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)