Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)
Dấu " = " xảy ra <=> a=b=c=1/4 ( cái này bạn tự giải rõ nhé)
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Chia cả hai vế cho cùng một số
Đơn giản biểu thức
Lời giải thu được
Ẩn lời giải
Kết quả: Giải phương trình với tập xác định
nhấn lộn lớp 1 là lớp 7 mà quan trọng j cái lớp quan trọng có giải dc ko mới là chuyện để come
toán lp 7 đúng k k pk toán lp 1 đâu
0Thay y , z vào biểu thức A , ta có :
A = 3x + 2.(x - 3) + 5.(x - 4)
A = 3x + 2x - 6 + 5x - 20
A = 10x - 26