Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
Câu a bạn sửa lại đề 11→1
\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)
\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)
a: \(A=\dfrac{1}{2a-1}\cdot\sqrt{5a^2}\cdot\left|2a-1\right|\)
\(=\dfrac{2a-1}{2a-1}\cdot a\sqrt{5}=a\sqrt{5}\)(do a>1/2)
b: \(A=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x-1}+1}\)
\(=\dfrac{\left|\sqrt{x-1}-1\right|}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1}+1}{\sqrt{x-1}+1}\)
\(=\dfrac{\sqrt{x-1}-1}{\sqrt{x-1}-1}+1=1+1=2\)
c:
\(=\dfrac{a+b}{b^2}\cdot\dfrac{ab^2}{a+b}=a\)
d: Sửa đề: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
e:
\(A=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)
f:
\(A=\sqrt{\dfrac{m}{\left(1-x\right)^2}\cdot\dfrac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\dfrac{m}{\left(x-1\right)^2}\cdot\dfrac{4m\left(x-1\right)^2}{81}}\)
\(=\sqrt{\dfrac{4m^2}{81}}=\dfrac{2m}{9}\)
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
\(a,A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\left(dk:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{x-1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x-1}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,x-3\sqrt{x}+2=0\Leftrightarrow x-\sqrt{x}-2\sqrt{x}+2=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Thay \(x=4\) vào A :
\(A=\dfrac{\sqrt{4}-1}{\sqrt{4}+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)
=>căn x+1 thuộc {1;2}
=>căn x thuộc {0;1}
mà x<>1
nên x=0
A= (2/x-√x - 1/√x-1) : x-4/x√x+√x - 2x với x>0, x khác 1, x khác 4 a) rút gọn A b) tìm x để A > -1/2
a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)
\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)
Với \(x\ge0;x\ne4\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}-2}>\frac{5}{4}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}-2}-\frac{5}{4}>0\)
\(\Leftrightarrow\frac{4\sqrt{x}-4-5\sqrt{x}+10}{4\left(\sqrt{x}-2\right)}>0\Leftrightarrow\frac{6-\sqrt{x}}{4\left(\sqrt{x}-2\right)}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-6}{4\left(\sqrt{x}-2\right)}< 0\)TH1 : \(\hept{\begin{cases}\sqrt{x}-6< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 36\\x>4\end{cases}}\Leftrightarrow4< x< 36\)
TH2 : \(\hept{\begin{cases}\sqrt{x}-6>0\\\sqrt{x}-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>36\\x< 4\end{cases}}}\)( vô lí )
Vậy 4 < x < 36 thì A > 5/4