Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(4\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮3\)
\(\Rightarrow2a-b⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮9\)
\(\Rightarrow3b^2⋮9\)
\(\Rightarrow b⋮3\)
\(\Rightarrow a⋮3\)
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
\(x+y-z=2\Rightarrow z=x+y-2\)
\(3x^2+2y^2-z^2=13\)
\(\Leftrightarrow3x^2+2y^2-\left(x+y-2\right)^2=13\)
\(\Leftrightarrow2x^2+y^2-2xy+4x+4y=17\)
\(\Leftrightarrow x^2+y^2+4-2xy-4x+4y+x^2+8x+16=37\)
\(\Leftrightarrow\left(x-y-2\right)^2+\left(x+4\right)^2=37=1^2+6^2\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y-2\right)^2=1\\\left(x+4\right)^2=6^2\end{matrix}\right.\) (do \(x\) nguyên dương nên chỉ có TH này)
\(\Rightarrow\left\{{}\begin{matrix}x-y-2=1\\x+4=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) (loại)
Hoặc \(\left\{{}\begin{matrix}x-y-2=-1\\x+4=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Câu 2:
\(a^2+b^2=c^2\Leftrightarrow\left(a+b\right)^2-2ab=c^2\)
\(\Leftrightarrow2ab=\left(a+b\right)^2-c^2=\left(a+b-c\right)\left(a+b+c\right)\) (1)
\(\Rightarrow2ab⋮\left(a+b+c\right)\)
- Nếu \(a+b+c\) lẻ \(\Rightarrow2⋮̸\left(a+b+c\right)\Rightarrow ab⋮\left(a+b+c\right)\)
- Nếu \(a+b+c\) chẵn, ta có \(\left(a+b+c\right)+\left(a+b-c\right)=2\left(a+b\right)\) chẵn
\(\Rightarrow a+b-c=2\left(a+b\right)-\left(a+b+c\right)\) là hiệu của 2 số chẵn \(\Rightarrow\) là số chẵn
\(\Rightarrow a+b-c=2k\) thay vào (1) ta được
\(\Rightarrow2k\left(a+b+c\right)=2ab\) \(\Rightarrow ab=k\left(a+b+c\right)\Rightarrow ab⋮\left(a+b+c\right)\)