K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Do \(\left(x+1\right)^2\ge0\); \(\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi \(x=-1;y=\dfrac{1}{3}\)

Vậy \(MIN_C=-10\) khi \(x=-1;y=\dfrac{1}{3}\)

7 tháng 7 2017

em là Phúc nè,cái này em đưa cho sp em mà sp em ko làm đc :))

25 tháng 2 2022

\(C=x^2+2x+1\dfrac{1}{2}\\ \Rightarrow C=\left(x^2+2x+1\right)+\dfrac{1}{2}\\ \Rightarrow C=\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

Vậy \(C_{min}=\dfrac{1}{2}\Leftrightarrow x=-1\)

25 tháng 2 2022

 \(C=x^2+2x+1\dfrac{1}{2}.\\ C=x^2+2x+1+\dfrac{1}{2}.\\ C=\left(x+1\right)^2+\dfrac{1}{2}.\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in R.\\ \dfrac{1}{2}>0. \)

\(\Rightarrow\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}.\)

Dấu "=" xảy ra khi \(x+1=0.\Leftrightarrow x=-1.\)

Vậy GTNN của biểu thức C là \(\dfrac{1}{2}\) khi x = -1.

a: \(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Dấu '=' xảy ra khi x=-1 và y=1/3

b: \(\left(2x-1\right)^2+3>=3\)

Do đó: D<=5/3

Dấu '=' xảy ra khi x=1/2

2: (3x-4)^2+2>=2

=>5/(3x-4)^2+2<=5/2

=>B>=-5/2

Dấu = xảy ra khi x=4/3

4: D=(3x^2+7-4)/(3x^2+7)=1-4/3x^2+7

3x^2+7>=7

=>4/3x^2+7<=4/7

=>-4/3x^2+7>=-4/7

=>D>=3/7

Dấu = xảy ra khi x=0

2) B = \(\dfrac{-5}{\left(3x-4\right)^2+2}\) 

Ta có: ( 3x-4)2 \(\ge\) 0 , \(\forall\) x

=> ( 3x-4)+2 \(\ge\) 2, \(\forall\) x

=> \(\dfrac{1}{\left(3x-4\right)^2+2}\) \(\le\) \(\dfrac{1}{2}\) , \(\forall\) x

=> \(\dfrac{-5}{\left(3x-4\right)^2+2}\) \(\ge\) \(\dfrac{-5}{2}\) , \(\forall\) x

=> B \(\ge\) \(\dfrac{-5}{2}\) 

Vậy B đạt GTNN khi bằng \(\dfrac{-5}{2}\) 

Dấu "= " xảy ra khi 3x - 4 = 0

4) D=\(\dfrac{3x^2+3}{3x^2+7}\) 

= 1 - \(\dfrac{4}{3x^2+7}\) 

Ta có: 3x2 \(\ge\) 0, \(\forall\) x

=> 3x2 +7 \(\ge\) 7, \(\forall\) x

=> \(\dfrac{1}{3x^2+7}\) \(\le\) \(\dfrac{1}{7}\) 

=> \(\dfrac{4}{3x^2+7}\) \(\le\) \(\dfrac{4}{7}\) 

=> 1 - \(\dfrac{4}{3x^2+7}\) \(\ge\) \(\dfrac{3}{7}\) 

Vậy D đạt GTNN khi bằng \(\dfrac{3}{7}\) 

Dấu "=" xảy ra khi x = 0

10 tháng 10 2019

em xét dấu trị tuyệt đối với mũ 2 nhé

17 tháng 7 2018

1)

A=(x-2)^2-1

ta co (x-2)^2>=0 moi x thuoc R

(x-2)^2-1>=-1 moi.....

hay A>=-1

vay gia tri nho nhat cua bieu thuc A=1<=>  x-2=0 => x=2

2)

C= 3:(x-2)^2+5

ta co (x-2)^2>=0 moi ...

3:(x-2)^2= <0 moi...

3:(x-2)^2+5=<5moi...

hay C=<5 moi...

vay gia tri lon nhat cu bieu thuc C=5<=>x-2=0=>x=2

xin loi ban minh chi lam dc the thoi

17 tháng 7 2019

Ta có: x4 \(\ge\)\(\forall\)x

=> x4 + 5 \(\ge\)\(\forall\)x

=> (x4 + 5)2 \(\ge\)25 \(\forall\)x

Dấu "=" xảy ra <=> x = 0

Vậy Min của A = 25 tại x = 0

17 tháng 7 2019

\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)

Vì \(x^4\ge0\)và \(x^4+10>0\)

\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

\(KL:B_{min}=25\Leftrightarrow x=0\)

1 tháng 3 2016

giúp với mình sắp nạp rồi