K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

a) x2-y2=45 =>(x-y)(x+y)=45. Vì x,y là các số tự nhiên và x-y<x+y nên ta có thể viết:

(x-y)(x+y)=3.15 hay (x-y)(x+y)=5.9

=>x-y=3 và x+y=15 hay x-y=5 và x+y=9.

=>x=9 và y=6 (đều loại) hay x=7 và y=2 (đều thỏa mãn).

- Vậy x=7, y=2.

26 tháng 1 2022

b) - Sửa lại đề: S=1+3+32+33+...+330.

=(1+3+32)+(32+33+34+35)+...+(327+328+329+330).

=13+32(1+3+32+33)+...+327(1+3+32+33)

=13+32.40+...+327.40

=13+40.(32+...+327) chia 5 dư 3.

- Mà các số chính phương chỉ có chữ số tận cùng là 0.1.4.5.6.9 nên số chính phương chia 5 dư 0;1;4.

- Vậy S không phải là số chính phương.

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

24 tháng 12 2021

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

24 tháng 1 2016

nhấn vào đúng 0 sẽ ra đáp án

24 tháng 1 2016

đừng tích bạn ấy lừa đó

10 tháng 8 2015

Thấy số chính phương là các số có dạng 3k hoặc 3k+1

A=1015+1=1000.....000000000001

Tổng các chữ số của A là 1+0+0+...+0+1=2

2 có dạng 3k+2

=> A có dạng 3k+2 nên A ko phải số chính phương

B chia hết cho B thì chắc chia hết cho 3

C thì            

10 tháng 8 2015

2) x2 + y= 3z=> x+ y chia hết cho 3 

Vì x; y2 là  số chính phương nên x; ychia cho 3 dư 0 hoặc 1

Nếu x2 hoặc y hoặc x2 và  y chia cho 3 dư 1 => x2 + y chia cho 3 dư 1 hoặc 2 ( trái với đề bai)

=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố  => x; y đều chia hết cho 3 

=> x2; ychia hết cho 9 => 3z2 chia hết cho 9 => zchia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3

Vậy...

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$