Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x+20 chia hết cho 5
=>x chia hết cho 5
=>\(x\in\left\{15;50\right\}\)
b: x-6 chia hết cho 3
=>x chia hết cho 3
=>\(x\in\left\{12;45\right\}\)
Lời giải:
$x\in \left\{12; 19; 45; 70\right\}$
$\Rightarrow x-6\in \left\{6; 13; 39; 64\right\}$
Các số này đều không chia hết cho 5 nên không tồn tại x thuộc tập đã cho thỏa mãn đề bài.
\(x-6\)⋮ 3⇒ \(x\) ⋮ 3
⇒ \(x\in\) B(3)
Vi 12 ⋮ 3; 45 ⋮ 3;
Vậy \(x\) \(\in\) {12; 45}
để x + 20 chia hết cho 3 mà 20 : 3 = 6 dư 2 nên x = 3k + 1
vì 15 chia hết cho 3 loại
17 : 3 => 1 + 7 = 8 = 3k + 2 loại
50 => 5 + 0 = 5 = 3K + 2 loại
23 => 2 + 3 = 5 = 3k + 2 loại
x = ???
Để (x + 20) chia hết cho 3 mà 20 ko chia hết cho 3, áp dụng tính chất chia hết của một tổng
nên x phải ko chia hết cho 3
Các số ko chia hết cho 5 trong tập trên là: 17;50;23
Ta có:x+20=>17+20=37(loại)
x+20=>50+20=70(loại)
x+20=>23+20=43(loại)
Vì x thuộc tập {15; 17; 50; 23} do đó x ∈ {∅}
Vậy x ∈ {∅}.
Ta có: \(\hept{\begin{cases}x+20⋮5\\20⋮5\end{cases}}\Rightarrow x⋮5\)
Vì \(x\in\left\{15;17;50;23\right\}\) nên \(x\in\left\{15;50\right\}\)
Vậy \(x\in\left\{15;50\right\}\).
\(x\) + 20 ⋮ 5
\(x\) ⋮ 5
⇒ \(x\in\) B(5) = {0; 5; 10; 20; 30; 35; 40; 45; 50; 55; ...;}
Vì \(x\) \(\in\) {15; 17; 50; 23}
Nên \(x\) \(\in\) {15; 50}
Ta có: \(\hept{\begin{cases}x-6⋮3\\6⋮3\end{cases}}\Rightarrow x⋮3\)
Mà \(x\in\left\{12;19;45;70\right\}\)
\(\Rightarrow x\in\left\{12;45\right\}\)
Vậy \(x\in\left\{12;45\right\}\).