Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
- Cho giấy quỳ tím ẩm vào 5 lọ trên
+ Khí HCl gặp nước tạo thành dung dịch axit HCl \(\rightarrow\) đỏ quỳ tím
+ Quỳ tím bị mất màu là khí Cl2
Cl2 + H2O\(\rightarrow\) HCl + HClO (HClO làm mất màu quỳ tím)
+ 3 khí CO2, H2, O2 không làm đổi màu quỳ tím.
- Dẫn lần lượt 3 khí qua ống nghiệm đụng CuO đun nóng
+ Khí làm CuO đen chuyển sang đỏ Cu là H2
CuO + H2 \(\rightarrow\) Cu + H2O
+ 2 khí còn lại là CO2 và O2
- Dẫn qua nước vôi trong \(\rightarrow\) đục là CO2
CO2 + Ca(OH)2 \(\rightarrow\) CaCO3 + H2O
- Khí còn lại là O2
2/
Nhận biết khí Cl2 có màu vàng lục.
- Lần lượt cho các khí còn lại qua nước vôi trong dư, khí nào làm đục nước vôi trong là CO2
CO2+Ca(OH)2\(\rightarrow\)CaCO3+H2O
- Đốt hai khí còn lại trong điều kiện thiếu oxi, khí nào cho chất rắn màu vàng là khí H2S, khí còn lại không cháy là HCl
\(2H_2S+O_2\rightarrow2S+2H_2O\)
Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:
Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.
E làm thế này đúng không ạ?
n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)
Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)
Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)
quá khủng
1. axetilen( ankin), benzen( hidrocacbon mạch vòng), ruou etylic ( ancol), axit axetic( axit cacboxylic), glucozo(cacbohidrat), etyl axetat( este), etilen( anken)
2.
a, qùy tím, nước vôi trong, dd brom
b, quỳ tím, nước vôi trong, và bạc
c,quỳ tím, nước vôi trong, cuso4 khan, kmno4
d,quỳ tím, brom, cuo
e, brom,quỳ tím,na
g, Cu(OH)2, đốt.
phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)
Đáp án B