Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
A = 2 + 22+...+ 249 + 250
2A = 22 +...+ 249 + 250 + 251
2A - A = 251 - 2
A = 251 - 2
A + 1 = 251 - 2 + 1 = 251 - 1 (là số lẻ)
\(2^{2n^2+1}\) là số chẵn với \(\forall\) n
Vậy A = 2 + 22 + ...+ 250 \(\ne\) \(2^{2n^2+1}\) \(\forall\) n
Vậy n \(\in\) \(\varnothing\)