\(\)A=(n+1)^4 +n^4+1 chia hết cho một số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=(n+1)4+n4+1=[(n2+2n+1)2−n2]+[(n4+2n2+1)−n2]A=(n+1)4+n4+1=[(n2+2n+1)2−n2]+[(n4+2n2+1)−n2]

=(n2+3n+1)(n2+n+1)+[(n2+1)2−n2]=(n2+3n+1)(n2+n+1)+[(n2+1)2−n2]

=(n2+3n+1)(n2+n+1)+(n2+n+1)(n2−n+1)=(n2+3n+1)(n2+n+1)+(n2+n+1)(n2−n+1)

=(n2+n+1)(n2+3n+1+n2−n+1)=(n2+n+1)(n2+3n+1+n2−n+1)

=(n2+n+1)(2n2+2n+1)=2.(n2+n+1)2⋮(n2+n+1)2=(n2+n+1)(2n2+2n+1)=2.(n2+n+1)2⋮(n2+n+1)2

⇒A⋮(n2+n+1)2⇒A⋮(n2+n+1)2 => đpcm

Chúc bạn học tốt

14 tháng 11 2020

\(A=\left(n^2+2n+1\right)^2-n^2+\left(n^4+n^2+1\right)\)\(=\left(n^2+3n+1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\left(n^2-n+1\right)\)

\(=\left(n^2+n+1\right)\left(2n^2+2n+2\right)=2\left(n^2+n+1\right)^2\)

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

13 tháng 11 2017

ko bít

13 tháng 11 2017

ko biết nói làm j

25 tháng 10 2016

1) A=4*\(\frac{10^{2n}-1}{9}\)        B=\(2\cdot\frac{10^{n+1}-1}{9}\)         C=\(8\cdot\frac{10^n-1}{9}\)

đặt 10^n=X        => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9

=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)

2)  = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)

mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6

do đó 4mn(m^2-n^2) chia hết 6*4=24

26 tháng 10 2016

Bài 2 ko đúng bn ak 6,4 không nguyên tố cùng nhau mà

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

28 tháng 10 2020

Bài 2:

Ta có: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\)

\(\Leftrightarrow\left(n-2\right)\left(2n+5\right)+3⋮n-2\)

\(\left(n-2\right)\left(2n+5\right)⋮n-2\)

nên \(3⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

Vậy: Để \(2n^2+n-7⋮n-2\) thì \(n\in\left\{3;1;5;-1\right\}\)

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

Bài 1:

a: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)