Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
đặt 2n+1=a^2 => 2n=(a-1)(a+1) chia hết cho 2
suy ra a lẻ => a-1, a+1 là 2 số chẵn ltiep => 2n chia hết cho 8 => n chia hết cho 4
đặt 3n+1=b^2 => 3n=(b-1)(b+1)
vì n chẵn suy ra 3n chẵn suy ra b lẻ => (b-1)(b+1) chia hết cho 8 => n chia hết cho 8
1 số chia 5 có thể dư 0,1,2,3,4 => 1 scp chia cho 5 chỉ có thể dư 0,1,4
Giả sử n không chia hết cho 5
+Nếu n chia 5 dư 1 => 2n+1 chia 5 dư 3 loại
+Nếu n chia 5 dư 2 => 3n+1 chia 5 dư 2 loại
+Nếu n chia 5 dư 3=> 2n+1 chia 5 dư 2 loại
+Nếu n chia 5 dư 4 => 3n+1 chia 5 dư 3 loại
suy ra vô lý => n chia hết cho 5 mà n chia hết cho 8 suy ra chia hết cho 40
Vì 2n+1 là số CP lẻ => 2n+1 : 8 dư 1 => 2n chia hết cho 8
=> n chia hết cho 4 => n chẵn => n+1 lẻ => n+1 : 8 dư1
=> n chia hết cho 8 (*)
ta có n+1+2n+1=3n+2 _(đồng dư) _ 2 (mod 3)
màn+1 và 2n+1 _(đồng dư)_ 0(hoặc)1 (mod 3)
từ đó => n+1 và 2n+1 _(đồng dư)_ 1(mod 3)
=>n chia hết cho 3 (**)
từ (*) và (**) mà (3,8)=1 => n chia hết cho 24
=> đpcm
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
\(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6-n^4\right)+\left(2n^3+2n^2\right)=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4+2n^2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
\(=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-n+1-n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với mọi \(n\inℕ\)và \(n\ge1\), ta có:
\(n^2\left(n+1\right)^2=\left[n\left(n+1\right)\right]^2\)luôn là số chính phương.
Mà \(n^2-2n+2=\left(n-1\right)^2+1\)luôn không là số chính phương ( vì n>1; \(n\inℕ\))
Do đó \(n^2\left(n+1\right)^2\left(n^2-2n+1\right)\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
\(\Rightarrow n^6-n^4+2n^3+2n^2\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
Vậy nếu \(n\inℕ,n>1\)thì số có dạng \(n^6-n^4+2n^3+2n^2\)không phải là số chính phương
TÍNH CHẤT : Nếu tích của các số là một số chính phương thì mỗi số đều là một số chính phương.