K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

nghi ngờ bạn học cùng lớp dậy thêm

NV
17 tháng 8 2020

3 câu đầu đều sử dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

\(N=\frac{1^2}{a}+\frac{2^2}{b+1}+\frac{3^2}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

\(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Câu d sử dụng BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(Q\ge\frac{1}{3}\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2+2020\)

\(Q\ge\frac{1}{3}\left(\frac{1}{3}\left(a+b+c\right)^2\right)^2+\frac{1}{3}\left(a+b+c\right)^2+2020=2026\)

Dấu "=" xảy ra khi \(a=b=c=1\)

18 tháng 7 2017

a) \(\left(m+n\right)^2-\left(m-n\right)^2+\left(m+n\right)\left(m-n\right)\)

\(=\left(m+n+m-n\right)\left(m+n-m+n\right)+m^2-n^2\)

\(=m^2-n^2+4mn\)

b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)

\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]-2a^3\)

\(=2b\left[a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right]-2a^3\)

\(=2b\left(a^2+3b^2\right)-2a^3\)

\(=2a^2b+6b^3-2a^3.\)

Tương tự áp dụng các HĐT.

18 tháng 7 2017

a) \(\left(m+n\right)^2-\left(m-n\right)^2=\left[\left(m+n\right)-\left(m-n\right)\right]\left[\left(m+n\right)+\left(m-n\right)\right]=\left(2n\right)\left(2m\right)=4mn\)\(\left(m+n\right)\left(m-n\right)=m^2-n^2\)

A=\(4mn+m^2-n^2\) tối giản rồi

b)

\(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]^3-3\left(a+b\right)\left(a-b\right)\left[\left(a+b\right)+\left(a-b\right)\right]=8a^3-3.2a.\left(a^2-b^2\right)\)B=\(8a^3-3.2a.\left(a^2-b^2\right)-2a^3=6a\left[a^2-\left(a^2-b^2\right)\right]=6ab^2\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2017

Lời giải:

Đặt \(P=a(b^2-1)(c^2-1)+b(a^2-1)(c^2-1)+c(a^2-1)(b^2-1)\)

\(P=a(b^2c^2-b^2-c^2+1)+b(a^2c^2-a^2-c^2+1)+c(a^2b^2-a^2-b^2+1)\)

\(P=abc(ab+bc+ac)+a+b+c-[a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)]\)

\(P=abc(ab+bc+ac)+a+b+c-[ab(a+b)+bc(b+c)+ac(a+c)]\)

\(P=abc(ab+bc+ac)+a+b+c+3abc-[ab(a+b+c)+bc(b+c+a)+ac(a+b+c)]\)

\(P=abc(ab+bc+ac)+a+b+c+3abc-(a+b+c)(ab+bc+ac)\)

Thay \(a+b+c=abc\)

\(\Rightarrow P=abc(ab+bc+ac)+4abc-abc(ab+bc+ac)\)

hay \(P=4abc\) (đpcm)

27 tháng 7 2017

Các bạn giúp mình nha.(Mình gấp lắm)

4 tháng 9 2017

bạn giải đc bài chưa