\(⋮\)an...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

Để am \(⋮\)an ( m \(\ge\)n ; n \(\ne\)0 )

TL :

Để am chia hết cho an thì a phải khác 0 và m phải lớn hơn hoặc bằng n

Chúc bn hok tốt ~

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

Bài 1:

Nếu $n$ không chia hết cho $7$ thì:

\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

b)

Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)

Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)

Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)

Tóm lại, $A$ chia hết cho $2$

---------

Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)

Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:

\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)

Vậy \(A\vdots 3\)

-----------------

Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)

+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)

+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$

\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)

Tóm lại $A\vdots 5$

Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)

Ta có đpcm.

1: \(\dfrac{A}{B}=\dfrac{4}{3}x^{n+1-3}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n< =0\end{matrix}\right.\Leftrightarrow2< =n< =3\)

2: \(\dfrac{A}{B}=\dfrac{7}{5}x^{n-1-2}y^{5-n}-xy^{4-n}=\dfrac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-3>=0\\5-n>=0\\4-n>=0\end{matrix}\right.\Leftrightarrow3\le n\le4\)

17 tháng 3 2019

Câu này mik trả lời rồi nhé bạn , có trong câu hỏi tương tự nha

b: \(\Leftrightarrow n^3-8+6⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

 

3 tháng 11 2017

a,

6n^2 - n + 5 2n + 1 3n - 2 6n^2 + 3n -4n + 5 -4n - 2 7 \

Để \(A⋮B\) \(\Leftrightarrow7⋮2n+5\) \(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Ta có bảng sau :

\(2n+5\) \(1\) \(7\) \(-1\) \(-7\)
\(n\) \(-2\) \(1\) \(-3\) \(-6\)

Vậy \(\left[{}\begin{matrix}n=-2\\n=1\\n=-3\\n=-6\end{matrix}\right.\) thì A chia hết cho B

b, tường tự câu a

Nếu mà bn ko lm đc thì nói mk ,mk sẽ giải cho

3 tháng 11 2017

Đặt tính chia:

6n-n+5 2 2n+1 3n-2 6n+3n - 2 -4n+5 - -4n-2 _______________ 7

\(\Rightarrow\text{Để }A⋮B\\ \text{thì }\Rightarrow7⋮2n+1\\ \Rightarrow2n+1\inƯ_{\left(7\right)}\\ \text{Mà }Ư_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)

Ta lập bảng giá trị :

\(2n+1\) \(-1\) \(1\) \(-7\) \(7\)
\(n\) \(-1\) \(0\) \(-4\) \(3\)

\(\Rightarrow n\in\left\{-4;-1;0;3\right\}\)

\(\text{Vậy }\text{ để }A⋮B\text{ thì }n\in\left\{-4;-1;0;3\right\}\)

b) Xem lại đề

\(\)

20 tháng 7 2019

\(^3+100⋮n+10\Leftrightarrow n^3+1000-900⋮n+10\Leftrightarrow\left(n+10\right)\left(n^2-10n+100\right)-900⋮n+10\Leftrightarrow900⋮n+10\Leftrightarrow n+10=900\left(\text{ vì n lon nhất}\right)\Leftrightarrow n=890\)

a: \(A=n\left(n-1\right)\left(n+1\right)\cdot n\)

TH1: n=2k

n(n-1)(n+1) chia hết cho 6 với mọi n

=>A chia hết cho 12

TH2: n=2k+1

\(A=\left(2k+1\right)\cdot\left(2k+1\right)\cdot2k\cdot\left(2k+2\right)\)

\(=4k\left(k+1\right)\left(2k+1\right)\left(2k+1\right)⋮4\)

mà 2k(2k+1)(2k+2) chia hết cho 6

nen A chia hết cho 12

d: Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(1\right)\)

\(A=n^5-n=n\left(n^4-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\left(2\right)\)

Từ (1) và (2) suy ra A chia hết cho 30

30 tháng 3 2020
https://i.imgur.com/qmu6ArT.jpg
30 tháng 3 2020

\(2a,2x^3+x^2-6x\)

\(=x\left(2x^2+x-6\right)\)

\(=x\left[2x\left(x+2\right)-3\left(x+2\right)\right]\)

\(=x\left(2x-3\right)\left(x+2\right)\)

\(b,3x^3-4x^2-3x+4\)

\(=x^2\left(3x-4\right)-\left(3x-4\right)\)

\(=\left(3x-4\right)\left(x^2-1\right)\)

\(=\left(3x-4\right)\left(x-1\right)\left(x+1\right)\)

\(c,x^2-4xy+4y^2-xz+2yz\)

\(=x^2-4xy+\left(2y\right)^2-xz+2yz\)

\(=\left(x-y\right)^2-xz+2yz\)