Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD có : M là trung điểm AB (gt)
Q là trung điểm AD (gt)
=> MQ là đường trung bình của ΔABD
=> MQ // BD ; MQ = 1/2 BD (1)
Xét ΔCBD có : N là trung điểm BC (gt)
P là trung điểm CD (gt)
=> NP là đường trung bình của ΔCBD
=> NP // BD ; NP = 1/2 BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP
Xét tứ giác MNPQ có : MQ // NP (cmt)
MQ = NP (cmt)
=> Tứ giác MNPQ là hình bình hành
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
Xét ΔABC có
M là trung điểm của BA
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trungb bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a: Xét ΔABD có
M là tđiểm của AB
Q là tđiểm của AD
Do đó:MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là tđiểm của BC
P là tđiểm của CD
Do đó: NP là đường trung bình
=>NP=BD/2 và NP//BD(2)
Xét ΔABC có
M là tđiểm của AB
N là tđiểm của BC
Do đó: MN là đường trung bình
=>MN=AC/2=BD/2(3)
Từ (1) và (3) suy ra MN=MQ
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
mà MN=MQ
nên MQPN là hình thoi
a, Xét tg ACD có :
AM=MB (gt) và DQ=OQ (gt)
=> MQ là đtb
=> MQ//AD và MQ=1/2AD
Xét tg ACD có :
AN=NC (gt) và DP=PC (gt)
=> NP là đtb
=> NP//AD và NP=1/2AD
Từ trên suy ra : MNPQ là hình thoi
b, dễ , không biết nói mình
nhớ k nha bạn
bạn ơi , nếu như bạn thì chỉ có 2 cặp cạnh đối song song và bằng nhau mà ra hình thoi thì siêu thật
\(a,x^2-4x+xy-4y=\left(x^2+xy\right)-\left(4x-4y\right)\\ =x\left(x+y\right)-4\left(x+y\right)\\ =\left(x+y\right)\left(x-4\right)\)
a) \(x^2-4x+xy-4y\)
\(=\left(x^2-4x\right)+\left(xy-4y\right)\)
\(=x\left(x-4\right)+y\left(x-4\right)\)
\(=\left(x-4\right)\left(x-y\right)\)