K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1

6.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}\left(x^2-4x+1-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\f\left(x\right)=x^2-4x+1-m=0\left(1\right)\end{matrix}\right.\)

a.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb lớn hơn 1 hay \(1< x_1< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(1-m\right)>0\\f\left(1\right)>0\\\dfrac{x_1+x_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\1-4+1-m>0\\\dfrac{4}{2}>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\)

\(\Rightarrow-3< m< -2\)

b.

Pt có đúng 2 nghiệm pb khi (1) có 2 nghiệm pb thỏa mãn \(x_1< 1< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=3+m>0\\f\left(1\right)=-2-m< 0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>-2\end{matrix}\right.\)

\(\Rightarrow m>-2\)

NV
29 tháng 1

7.

\(\sqrt{x^2-3x+m}=4-2x\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-2x\ge0\\x^2-3x+m=\left(4-2x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\3x^2-13x+16-m=0\left(1\right)\end{matrix}\right.\)

a.

Pt có đúng 2 nghiệm pb khi (1) có 2 nghiệm pb thỏa mãn \(x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=13^2-12\left(16-m\right)>0\\f\left(2\right)=2-m\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{13}{6}\le2\left(ktm\right)\end{matrix}\right.\)

Vậy ko tồn tại m thỏa mãn yêu cầu

b.

Pt có nghiệm duy nhất khi (1) có nghiệm kép \(x=-\dfrac{b}{2a}=\dfrac{13}{6}< 2\) (ktm) hoặc có 2 nghiệm pb sao cho \(x_1\le2< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=13^2-12\left(16-m\right)>0\\f\left(2\right)=2-m\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{23}{12}\\m\ge2\end{matrix}\right.\)

\(\Rightarrow m\ge2\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:
Để \(A\cap B\neq \varnothing\) thì $2-5m> m+9$

$\Leftrightarrow m< \frac{-7}{6}$

31 tháng 3 2019

Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Ta biểu diễn Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 bằng hai vec tơ Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 như hình vẽ.

Khi đó Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 (C là đỉnh còn lại của hình bình hành MACB).

Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

+ Tính MC : Gọi I là trung điểm của AB ⇒ I là trung điểm của MC.

Δ MAB có MA = MB = 100 và góc AMB = 60º nên là tam giác đều

⇒ đường cao Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

⇒ MC = 2.MI = 100√3.

Vec tơ Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 là vec tơ đối của Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 có hướng ngược với Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 và có cường độ bằng 100√3N.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Chọn hệ trục tọa độ Oxy như hình vẽ

Ta có: \(\overrightarrow {{F_1}}  = \left( {1500;0} \right)\)

Do \(\;\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_2}} } \right) = 30^\circ \) nên tọa độ của \(\overrightarrow {{F_2}} \)là: \(\overrightarrow {{F_2}}  = \left( {600.\cos {{30}^o};600.\sin {{30}^o}} \right) = \left( {300\sqrt 3 ;300} \right)\)

Do \(\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_3}} } \right) = {45^o}\) nên tọa độ của \(\overrightarrow {{F_3}} \)là: \(\overrightarrow {{F_3}}  = \left( {800.\cos {{45}^o}; - 800.\sin {{45}^o}} \right) = \left( {400\sqrt 2 ; - 400\sqrt 2 } \right)\)

Do đó, lực \(\overrightarrow F \) tổng hợp các lực tác động lên vật có tọa độ là: \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \left( {1500 + 300\sqrt 3  + 400\sqrt 2 ;300 - 400\sqrt 2 } \right)\)

Độ lớn lực tổng hợp \(\overrightarrow F \) tác động lên vật là: \(\left| {\overrightarrow F } \right| = \sqrt {{{\left( {1500 + 300\sqrt 3  + 400\sqrt 2 } \right)}^2} + {{\left( {300 - 400\sqrt 2 } \right)}^2}}  \approx 2599\left( N \right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Khi đó các lực \(\overrightarrow F ,\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) lần lượt là \(\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {AB} \)   

\(\alpha  = \widehat {{\rm{BAx}}} = 30^\circ \) \( \Rightarrow \widehat {CAB} = 60^\circ \) 

\(AB = AC.c{\rm{os}}\widehat {CAB} = a.c{\rm{os60}}^\circ {\rm{ = }}\frac{a}{2} \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {AB} } \right| = \frac{a}{2}\)

\(AD = BC = AC.\sin \widehat {CAB} = a.\sin 60^\circ  = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {AD} } \right| = AD = \frac{{a\sqrt 3 }}{2}\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \frac{{a\sqrt 3 }}{2};\left| {\overrightarrow {{F_2}} } \right| = \frac{a}{2}\)

Một lực \(\overrightarrow F \) không đổi tác động vào một vật và điểm đặt của lực chuyển động thẳng từ A đến B. Lực \(\overrightarrow F \) được phân tích thành hai lực thành phần là \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) \((\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \;).\)a) Dựa vào tính chất của tích vô hướng, hãy giải thích vì sao công sinh bởi lực \(\overrightarrow F \) (đã...
Đọc tiếp

Một lực \(\overrightarrow F \) không đổi tác động vào một vật và điểm đặt của lực chuyển động thẳng từ A đến B. Lực \(\overrightarrow F \) được phân tích thành hai lực thành phần là \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) \((\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \;).\)

a) Dựa vào tính chất của tích vô hướng, hãy giải thích vì sao công sinh bởi lực \(\overrightarrow F \) (đã được đề cập ở trên) bằng tổng của các công sinh bởi các lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \).

b) Giả sử các lực thành phần \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \)tương ứng cùng phương, vuông góc với phương chuyển động của vật. Hãy tìm mối quan hệ giữa các công sinh bởi lực \(\overrightarrow F \) và lực \(\overrightarrow {{F_1}} \).

1
24 tháng 9 2023

Tham khảo:

a)

 

Gọi \(A,{A_1},{A_2}\) lần lượt là công sinh bởi lực \(\overrightarrow F \), \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \).

Ta cần chứng minh: \(A = {A_1} + {A_2}\)

Xét lực \(\overrightarrow F \), công sinh bởi lực \(\overrightarrow F \) là: \(A = \left| {\overrightarrow F } \right|.{\rm{ AB}}.\cos \left( {\overrightarrow F ,\overrightarrow {AB} } \right) = \overrightarrow F .\overrightarrow {AB} \)

Tương tự, ta có: \({A_1} = \overrightarrow {{F_1}} .\overrightarrow {AB} \), \({A_2} = \overrightarrow {{F_2}} .\overrightarrow {AB} \)

Áp dụng tính chất của tích vô hướng ta có:

\({A_1} + {A_2} = \overrightarrow {{F_1}} .\overrightarrow {AB}  + \overrightarrow {{F_2}} .\overrightarrow {AB}  = \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right).\overrightarrow {AB}  = \overrightarrow F .\overrightarrow {AB}  = A\)

b)

 

Vì \(\overrightarrow {{F_2}} \)tương ứng vuông góc với phương chuyển động nên \(\overrightarrow {{F_2}}  \bot \overrightarrow {AB} \)

Do đó: công sinh bởi lực \(\overrightarrow {{F_2}} \) là: \({A_2} = \overrightarrow {{F_2}} .\overrightarrow {AB}  = 0\)

Mà \(A = {A_1} + {A_2}\)

\( \Rightarrow A = {A_1}\)

Vậy công sinh bởi lực \(\overrightarrow F \) bằng công sinh bởi lực \(\overrightarrow {{F_1}} \).

24 tháng 9 2023

Tham khảo:

Dựng hình bình hành ABCD với hai cạnh là hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) như hình vẽ

 

Ta có:

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {AD}  + \overrightarrow {AB}  = \overrightarrow {AC}  \Rightarrow \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {AC} } \right| = AC\)

Xét \(\Delta ABC\) ta có:

\(BC = AD = \left| {\overrightarrow {{F_1}} } \right| = 3\;,AB = \;\left| {\overrightarrow {{F_2}} } \right| = 2\;.\)

\(\widehat {ABC} = {180^o} - \widehat {BAD} = {180^o} - {120^o} = {60^o}\)

Theo định lí cosin ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos \widehat {ABC}\\ \Leftrightarrow A{C^2} = {2^2} + {3^2} - 2.2.3.\cos {60^o}\\ \Leftrightarrow A{C^2} = 7\\ \Leftrightarrow AC = \sqrt {7} \end{array}\)

Vậy \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \sqrt {7} \)