K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn (như 1+1 = ?). Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

31 tháng 7 2019

Ko có chức năng đó đâu bạn

20 tháng 2 2018

casio toán là gì

Casio toán tức là thi toán Casio ddos^.^

Câu 1 (2,0 điểm) Thực hiện phép tính:

a) 2xy.3x2y3

b) x.(x2 - 2x + 5)

c) (3x2 - 6x) : 3x

d) (x2 – 2x + 1) : (x – 1)

Câu 2 (2,0 điểm). Phân tích các đa thức sau thành nhân tử:

a) 5x2y - 10xy2

b) 3(x + 3) – x2 + 9

c) x2 – y2 + xz - yz

Câu 3 (2,0 điểm). Cho biểu thức: Đề thi hk1 môn toán lớp 8

a) Với điều kiện nào của x thì giá trị của biểu thức A được xác định?

b) Rút gọn biểu thức A.

c) Tìm giá trị của biểu thức A tại x = 1.

Câu 4 (3,5 điểm). Cho tam giác MNP vuông tại M, đường cao MH. Gọi D, E lần lượt là chân các đường vuông góc hạ từ H xuống MN và MP.

a) Chứng minh tứ giác MDHE là hình chữ nhật.

b) Gọi A là trung điểm của HP. Chứng minh tam giác DEA vuông.

c) Tam giác MNP cần có thêm điều kiện gì để DE = 2EA.

Câu 5 (0,5 điểm). Cho a + b = 1. Tính giá trị của các biểu thức sau:

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).

Tk ủng hộ mk nha .

#Thiên_Hy

18 tháng 4 2019

- Kì II í ạ, có ko ạ

7 tháng 6 2017

kết quả đúng là 1,519821606041,bằng lời giải CASIO nha

TK CHO MK NHA BẠN 

7 tháng 6 2017

lan anh le trình bày số cụ thể chứ không phải ......41 đâu bn

17 tháng 1 2020

Ta có: \(n^5+1=\left(n+1\right)\left(n^4-n^3+n^2-n+1\right)\)

      \(n^3+1=\left(n+1\right)\left(n^2-n+1\right)\) 

 \(n^5+1⋮n^3+1\)

\(\Leftrightarrow n^4-n^3+n^2-n+1⋮n^2-n+1\)

\(\Leftrightarrow n^2\left(n^2-n+1\right)-\left(n-1\right)⋮n^2-n+1\)

\(\Leftrightarrow n-1⋮n^2-n+1\)

\(\Rightarrow n\left(n-1\right)⋮n^2-n+1\)

\(\Leftrightarrow n^2-n+1-1⋮n^2-n+1\)

\(\Leftrightarrow1⋮n^2-n+1\)

\(\Leftrightarrow n\left(n-1\right)+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

....

(Tính được giá trị của n rồi bạn nhớ thử lại nhé!!)

17 tháng 1 2020

Vì \(n\inℤ\)\(\frac{n^5+1}{n^3+1}\inℤ\)\(\Leftrightarrow\frac{n\left(n^5+1\right)}{n^3+1}=\frac{n^6+n}{n^3+1}=\frac{\left(n^6-1\right)+\left(n+1\right)}{n^3+1}=\frac{\left(n^3-1\right)\left(n^3+1\right)+\left(n+1\right)}{n^3+1}\)

\(=\left(n^3-1\right)+\frac{n+1}{n^3+1}=\left(n^3-1\right)+\frac{1}{n^2-n+1}\)

Vì \(n\inℤ\)\(\Rightarrow n^3-1\inℤ\)\(\Rightarrow\)Để biểu thức đã cho có giá trị nguyên thì \(1⋮\left(n^2-n+1\right)\)

\(\Rightarrow n^2-n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

TH1: \(n^2-n+1=-1\)\(\Leftrightarrow n^2-n+2=0\)( loại )

TH2: \(n^2-n+1=1\)\(\Leftrightarrow n\left(n-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=0\\n-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)( thoả mãn )

Vậy \(n\in\left\{0;1\right\}\)