Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có :
\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)
= \(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)
Ta Thấy :
\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp
Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)
Tích của 2 số tự nhiên liên tiếp chia hết cho 2
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)
=a(a+1)(a+2)
Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)
mà (2;3)=1
=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)
b)Ta có:
a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a
cái này có phải đề sai k vậy bạn
Ta có: \(n^5+1=\left(n+1\right)\left(n^4-n^3+n^2-n+1\right)\)
\(n^3+1=\left(n+1\right)\left(n^2-n+1\right)\)
\(n^5+1⋮n^3+1\)
\(\Leftrightarrow n^4-n^3+n^2-n+1⋮n^2-n+1\)
\(\Leftrightarrow n^2\left(n^2-n+1\right)-\left(n-1\right)⋮n^2-n+1\)
\(\Leftrightarrow n-1⋮n^2-n+1\)
\(\Rightarrow n\left(n-1\right)⋮n^2-n+1\)
\(\Leftrightarrow n^2-n+1-1⋮n^2-n+1\)
\(\Leftrightarrow1⋮n^2-n+1\)
\(\Leftrightarrow n\left(n-1\right)+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
....
(Tính được giá trị của n rồi bạn nhớ thử lại nhé!!)
Vì \(n\inℤ\), \(\frac{n^5+1}{n^3+1}\inℤ\)\(\Leftrightarrow\frac{n\left(n^5+1\right)}{n^3+1}=\frac{n^6+n}{n^3+1}=\frac{\left(n^6-1\right)+\left(n+1\right)}{n^3+1}=\frac{\left(n^3-1\right)\left(n^3+1\right)+\left(n+1\right)}{n^3+1}\)
\(=\left(n^3-1\right)+\frac{n+1}{n^3+1}=\left(n^3-1\right)+\frac{1}{n^2-n+1}\)
Vì \(n\inℤ\)\(\Rightarrow n^3-1\inℤ\)\(\Rightarrow\)Để biểu thức đã cho có giá trị nguyên thì \(1⋮\left(n^2-n+1\right)\)
\(\Rightarrow n^2-n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
TH1: \(n^2-n+1=-1\)\(\Leftrightarrow n^2-n+2=0\)( loại )
TH2: \(n^2-n+1=1\)\(\Leftrightarrow n\left(n-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=0\\n-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)( thoả mãn )
Vậy \(n\in\left\{0;1\right\}\)