Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3.[1-1/4+1/4-1/7+......+1/67-1/70]
=1/3.[1-1/70]
=1/3.69/70=23/70<1
xong roi k di
=(1-1/4)+(1/4-1/7)+....+(1/67-1/70)
=1-1/4+1/4-1/7+......+1/67-1/70
=1-1/70
=69/70
đúng 100%
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\cdot\frac{48}{98}\)
\(A=\frac{16}{98}=\frac{8}{49}\)
\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)
\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)
\(B=2\cdot\frac{33}{100}\)
\(B=\frac{33}{50}\)
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98
3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98
3A = 1/2 - 1/98
3A = 24/49
A = 24/49 : 3
A = 72/49
B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100
3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100
3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100
3/2B = 1 - 1/100
3/2B = 99/100
B = 99/100 : 3/2
B = 33/50
Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)
1/4-1/7 = 3/28 = 3.(1/4.7)
A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)
A = 3.(1-1/100)
A = 3.(99/100)
A = 297/100
\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}\)
\(A=\frac{33}{100}\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\Rightarrow\frac{99}{100}=\frac{0.33.x}{2009}\)
\(\Rightarrow100.0.33.x=99.2009\)
\(\Rightarrow0x=198891\Rightarrow\)không có GT x thỏa mãn
\(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{91\cdot94}=\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{91\cdot94}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\right)\)
\(=\frac{1}{3}\left[\left(1-\frac{1}{94}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{91}-\frac{1}{91}\right)\right]\)
\(=\frac{1}{3}\left[\left(\frac{94}{94}-\frac{1}{94}\right)+0+...+0\right]=\frac{1}{3}\cdot\frac{93}{94}=\frac{93}{282}\)
\(S=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{2002\cdot2005}\)
\(3S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{2002\cdot2005}\)
\(3S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)
\(3S=\frac{1}{1}-\frac{1}{2005}\)
\(3S=\frac{2004}{2005}\)
\(S=\frac{2004}{2005}\div3=\frac{668}{2005}\)
Ta có:
\(S=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2002.2005}\)
\(\Rightarrow S=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2002.2005}\right)\)
\(\Rightarrow S=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2002}-\frac{1}{2005}\right)\)
\(\Rightarrow S=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{2005}\right)=\frac{1}{3}.\frac{2004}{2005}=\frac{668}{2005}\)
Ta có : 1/ 1.4 + 1/ 4.7 + .... + 1/ 2016.2019 .
= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2016 - 1/2019 .
= 1 - 1/2019 .
= 2018/2019 .
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2016}-\frac{1}{2019}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{3}.\frac{2018}{2019}\)
\(=\frac{2018}{6057}\)
_Chúc bạn học tốt_
3. ( 1/1.4 +1/4.7 +1/7.10 +...+ 1/x.(x+3)
3/1.4 +1/4.7+1/7.10 + ...+ 3/ x . (x+3)
1/1 - 1/4 + 1/4 - 1/6 + 1/7 - 1/10 + ...+ 1/x-1/x+3
1/1 - 1/x+3
x+3/x+3 - 1/x+3
x+2/x+3
1/1*4+1/4*7+1/7*10+...+1/2010*2013=A
3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013
3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013
3A=1-1/2013<1
Suy ra : A <1/3
Nho k cho minh voi nhe
A = \(\frac{1}{1.4}\)+ \(\frac{1}{4.7}\)+\(\frac{1}{7.10}\)+...+ \(\frac{1}{2014.2017}\)
3A = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{2014.2017}\)
3A = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{2014}-\frac{1}{2017}\)
3A= 1 - \(\frac{1}{2017}\)
A = \(\frac{1}{3}-\frac{1}{2017.3}\)
A = \(\frac{672}{2017}\)
Ta có \(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2014.2017}\)
\(\Rightarrow A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{3}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{3}.\frac{2016}{2017}=\frac{672}{2017}\)
Vậy \(A=\frac{672}{2017}\)
~ Học tốt
# Chiyuki Fujito