Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)có \(\widehat{B}=\widehat{C}\)=> \(\Delta ABC\)cân tại A
=> phân giác AD đồng thời là đường cao trong \(\Delta ABC\)=> AD vuông góc BC
lại có BC//Ay => AD vuông góc Ay
Vì góc B = góc C ---> tam giác ABC là tam giác cân
---> tia phân giác AD đồng thời cũng là đường cao
---> AD VUÔNG GÓC BC
Lại có Ay // BC
---> AD // Ay
học tốt
Bài 5*:
\(E\inℤ\Rightarrow2E=\frac{2x+2}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Leftrightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.
Bài 1:
\(A=\frac{x+15}{x-2}=\frac{x-2+17}{x-2}=1+\frac{17}{x-2}\inℤ\Leftrightarrow\frac{17}{x-2}\inℤ\)
mà \(x\)là số nguyên nên \(x-2\inƯ\left(17\right)=\left\{-17,-1,1,17\right\}\)
\(\Leftrightarrow x\in\left\{-15,1,3,19\right\}\).
Bài 2, 3, 4: Tương tự.
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+2y+z}{338}=\frac{169}{338}=\frac{1}{2}\)
\(\Rightarrow3x+25=\frac{1}{2}.144=72\)
\(x=\frac{47}{3}\)
\(2y-169=\frac{1}{2}.25=\frac{25}{2}\)
\(y=\frac{363}{4}\)
|4x-1| = 19 - 2
|4x-1| = 17
(1) 4x-1 = 17 (2) 4x-1 = - 17
4x = 17+1 4x = -17 + 1
x = 18 : 4 x = -16 : 4
x = 9/2 x = - 4
Kết luận: ...
( mik quen lm cách chia TH )
Ta có :
| 4x - 1 | - 2 = 19
=> | 4x - 1 | = 21
\(\Rightarrow\orbr{\begin{cases}4x-1=21\\4x-1=-21\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=22\\4x=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{22}{4}\\x=-5\end{cases}}\)
Bài 5 :
\(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-5}{4}\end{cases}}\)
Bài 6 :
| x - 3,4 | + | 2,6 - x | = 0
=> | x - 3,4 | = 0 - | 2,6 - x |
Nếu | 2,6 - x | > 0 thì Biểu thức | x - 3,4 | + | 2,6 - x | = 0 không tồn tại
Như vậy | 2,6 - x | = 0
Khi đó : | x - 3,4 | = 0 ; | 2,6 - x | = 0
=> x = 3,4 ; x = 2,6
Vì x không thể nhận hai giá trị cùng lúc được nên không có x thỏa mãn đề bài