Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
ƯCLN(a;b)=2
=> a,b khác 0 và>0
a chia hết cho 2
b cx vậy
a.b=48
=> a,b E Ưchẵn(48)
Lập bảng ta tìm được:
a | b | a.b | ƯCLN |
2 | 24 | 48 | 2 |
4 | 12 | 48 | 4 |
6 | 8 | 48 | 2 |
8 | 6 | 48 | 2 |
12 | 4 | 48 | 4 |
24 | 2 | 48 | 2 |
Vậy có 6 cặp thỏa mãn đề bài
a,b E {(24;2);(12;4);(8;6);(2;24);(4;12);(6;8)}
Shitbo sai rồi vì đầu bài cho biết ƯCLN =2 mà các cặp 4 và 12 :12 và 4 có ƯCLN = 4
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15
Suy ra: a.b = 300.15 = 4500
Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500=>15.15.m.n =4500=> m.n = 20
Suy ra: m=1 và n=20 hoặc m=4 và n=5
\(ƯCLN\left(a;b\right)=6\Rightarrow\hept{\begin{cases}a=6m\\b=6n\end{cases}}\) với \(m;n\in\)N* và (m;n)=1
Có a+b=48 <=> 6m+6n=48 <=> 6(m+n)=48 <=> m+n=8
Ta được bảng sau:
Vậy .......................................