\(\frac{x}{y}=\frac{3}{5}\)và x+y = 16 làm ik rồi t i c h c ho

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

Answer:

Có: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{5}=2\Rightarrow y=10\end{cases}}\)

27 tháng 12 2021

x/y = 3/5

=>x/3 = y/5

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x/3 = y/5 = x + y/3 + 5 = 16/8 = 2

Mà x/3 = 2 => x = 3 . 2 = 6

      y/5 = 2 => y = 5 . 2 = 10

Vậy x = 6 ; y = 10.

22 tháng 10 2016

dễ lắm nhưng bây h mình k có thời gian để giải 

22 tháng 10 2016
câu a) x/2=2.y/2.3=3.z/3.4 Áp dụng tính chất của dãy tỉ số bằng nhau x/2=2.y/2.3=3.z/3.4=x+2Y-3Z/2+6-12=-20/-4=5 X/2=5 SUY RA X=10 2.Y/2.3=5 SUY RA Y/3=5 suy ra y=15 3.z/3.4=5 suy ra z/4=5 suy ra z=20 vậy x=10 y=15 z=20
18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

19 tháng 9 2019

Bài 3:

a) \(\frac{x}{1,2}=\frac{5}{6}\)

\(x.6=5.1,2\)

\(x.6=6\)

\(x=6:6\)

\(x=1\)

Vậy \(x=1.\)

b) \(\frac{5}{9}:x=\frac{7}{4}:\frac{3}{10}\)

\(\frac{5}{9}:x=\frac{35}{6}\)

\(x=\frac{5}{9}:\frac{35}{6}\)

\(x=\frac{2}{21}\)

Vậy \(x=\frac{2}{21}.\)

Bài 5:

Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\left(a+b\right).\left(d+a\right)=\left(b+c\right).\left(c+d\right)\)

\(\Rightarrow ad+a^2+bd+ba=bc+bd+c^2+cd\)

\(\Rightarrow a^2+a.\left(b+d\right)=c^2+c.\left(b+d\right)\)

\(\Rightarrow a.\left(b+d\right)=c.\left(b+d\right)\)

\(\Rightarrow a=c\left(đpcm\right).\)

Chúc bạn học tốt!

19 tháng 9 2019

Nhầm. Chúc em học tốt! Contrim Đẹptrai

17 tháng 10 2018

a) Theo đề, ta có:

  \(\frac{x}{2}=\frac{y}{3}\) và\(\frac{y}{5}=\frac{z}{7}\) và x+y+z=98

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) và x+y+z=98

Theo tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) \(=\frac{x+y+z}{10+15+21}=\frac{98}{46}=\frac{49}{23}\)

       Suy ra:      \(x=\frac{490}{23};y=\frac{735}{23};z=\frac{1029}{23}\)

b) Theo đề, ta có:

     2x=3y=5z và x+y-z=95

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x+y-z=95

     Theo tính chất dãy tỉ số bằng nhau, ta có:

         \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) \(=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

         Suy ra:    x=20 ; y=50 ; z=30

c) Theo đề, ta có:

       \(\frac{x}{2}=\frac{y}{3}\) va xy=54

     Đặt \(\frac{x}{2}=\frac{y}{3}\)\(=t\) 

          nên x=2t

                 y=3t

Ta có:     x.y  =54

             2t .3t=54

                6t2=54

                  t2=9

             => t =+3

Suy ra:   x=6 hoặc x= -6

              y=9 hoặc y= -9

d) Theo đề, ta có:

       \(\frac{x}{5}=\frac{y}{3}\) và x2+y2=4

    Đặt  \(\frac{x}{5}=\frac{y}{3}=t\)

       nên x=5t

              y=3t

    Ta có:      x2+y2=4

                  (5t)2+(3t)2=4

                        8t2      =4

                          t2      =\(\frac{1}{2}\)

 Suy ra: VÔ LÝ

 hok tot nha!!!

7 tháng 7 2018

ai làm cho mik đi

8 tháng 7 2018

\(a)\)Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\cdot(2x+3)-(4x+5)}{2\cdot(5x+2)-(10x+2)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)

Suy ra :

\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1\cdot(5x+2)=2\cdot(2x+3)\)

\(5x+2=4x+6\)

\(5x-4x=6-2\)

\(x=4\)

\(b)\)Ta có : \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)

\(\Rightarrow\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)

\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)

\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)

Đặt : \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k;y=8k;z=20k\)

Thay vào đề , ta có : xyz = 640

\(\Rightarrow4k\cdot8k\cdot20k=640\)

\(\Rightarrow640k^3=640\)

\(\Rightarrow k^3=1\)

\(\Rightarrow k=1\)

\(\Rightarrow x=4;y=8;z=20\)

Vậy

3 tháng 8 2017

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)( 1 )

\(\frac{y}{3}=\frac{5z}{9}\Rightarrow\frac{y}{15}=\frac{z}{9}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}=\frac{3x+2y-z}{18+30-9}=\frac{-78}{39}=-2\)

\(\Rightarrow x=-12;y=-30;z=-18\)

3 tháng 8 2017

\(\frac{x}{2}\)\(\frac{y}{5}\)\(\frac{y}{3}\)\(\frac{5z}{9}\)và 3x+2y-z=-78

\(\Rightarrow\)\(\frac{x}{6}\)\(\frac{y}{15}\)\(\frac{y}{15}\)\(\frac{5z}{45}\) và 3x+2y-z=-78

\(\Rightarrow\)\(\frac{x}{6}\)\(\frac{y}{15}\)\(\frac{5z}{45}\) và 3x+2y-z=-78

\(\Rightarrow\)\(\frac{3x}{18}\)\(\frac{2y}{30}\)\(\frac{z}{9}\) và 3x+2y-z=-78

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x}{18}\)\(\frac{2y}{30}\)\(\frac{z}{9}\)\(\frac{3x+2y-z}{18+30-9}\)\(\frac{-78}{39}\)= -2

Suy ra:    \(\frac{x}{6}\)= -2 \(\Rightarrow\)x= 6.(-2)=-12

               \(\frac{y}{15}\)= -2 \(\Rightarrow\)y= 15.(-2)=-30

               \(\frac{z}{9}\)= -2 \(\Rightarrow\)z= 9.(-2)=-18

10 tháng 9 2017

ngu như con lợn

11 tháng 9 2017

bạn nói mình ngu sao bạn ko giải đi

5 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\)  =>   \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

Vậy ...

a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ

\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5