Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (x + 3).(x2 - 1)
= x.x2 - x.1 + 3.x2 - 3.1
= x3 - x + 3x2 - 3
= x3 + 3x2 - x - 3
b. (3x + 2).(4x - 1)
= 3x.4x - 3x + 2.4x - 2
= 12x2 - 3x + 8x - 2
= 12x2 + 5x - 2
c. (2x - 3).(3x + 2)
= 2x.3x + 2x.2 - 3.3x - 3.2
= 6x2 + 4x - 9x - 6
= 6x2 - 5x - 6
d. (12x - 5).(4x + 1)
= 12x.4x + 12x - 5.4x - 5
= 48x2 + 12x - 20x - 5
= 48x2 - 8x - 5
e. (x - 3).(x2 + 3x + 9)
= x.x2 + x.3x + x.9 - 3x2 - 3.3x - 3.9
= x3 + 3x2 + 9x - 3x2 - 9x - 27
= x3 - 27 (Đây là dạng HĐT x3 - 33)
\(\Rightarrow3\left(x^3-8\right)-3x^3-3x=-30\\ \Rightarrow3x^3-24-3x^3-3x=-30\\ \Rightarrow-3x=-6\Rightarrow x=2\)
\(3\left(x-2\right)\left(x^2+2x+4\right)-3x\left(x^2+1\right)=-30\)
\(\Leftrightarrow3x^2-24-3x^3-3x=-30\)
\(\Leftrightarrow x=2\)
\(G=2x^2-3x+1=2x^2-2x-x+1\)
\(=2x\left(x-1\right)-\left(x-1\right)=\left(2x-1\right)\left(x-1\right)\)
\(H=-x^2+5x-4=-x^2+4x+x-4\)
\(=-x\left(x-4\right)+\left(x-4\right)=\left(1-x\right)\left(x-4\right)\)
\(I=x^2+4x+3=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)
\(K=2x^2+7x+5=2x^2+2x+5x+5\)
\(=2x\left(x+1\right)+5\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\)
\(L=-3x^2-5x-2=-3x^2-3x-2x-2\)
\(=-3x\left(x+1\right)-2\left(x+1\right)=\left(-3x-2\right)\left(x+1\right)\)
G = 2x2 - 3x +1 = 2x2 -2x -x +1 =(x-1).(2x-1)
H = -x2 + 5x - 4 = -x2 + 4x +x-4 = (x-4).(1-x)
I = x2 + 4x + 3 = x2 + 3x + x + 3 =(x+3).(x+1)
K = 2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = (x+1).(2x+5)
L = -3x2 -5x -2 = -3x2 - 3x - 2x - 2 = -3.x(x+1) - 2.(x+1) = (x+1).(-3x-2)
a)\(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x^3+2x+3x^2+3=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\x^2+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x=-3\\x^2+1>0\left(loai\right)\end{array}\right.\)
\(\Leftrightarrow x=-\frac{3}{2}\)
b)\(x\left(2x-1\right)\left(1-2x\right)=0\)
\(\Leftrightarrow-x\left(2x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow-x\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\\left(2x-1\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\2x=1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\end{array}\right.\)
\(2x^3+3x^2+2x+3=0\)
\(2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\left(2x+3\right)\left(x^2+1\right)=0\)
\(2x+3=0\left(x^2+1\ge1>0\right)\)
\(2x=-3\)
\(x=-\frac{3}{2}\)
\(x\left(2x-1\right)\left(1-2x\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\2x-1=0\\1-2x=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\2x=1\\2x=1\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\end{array}\right.\)
\(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2.\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2.\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(a,\)\(x^3-3x^2+1-3x\)
\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right)^3-3x\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)^2+3x\right]\)
\(=\left(x+1\right)\left(x^2+2x+1+3x\right)\)
\(=\left(x+1\right)\left(x^2+5x+1\right)\)
\(b,\)\(3x-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(3x^2+3x\right)-\left(10x+10\right)\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(3x-10\right)\left(x+1\right)\)
\(c,\)\(x^4+1-2x^2\)
\(=x^4-x^2-x^2+1\)
\(=\left(x^4-x^2\right)-\left(x^2-1\right)\)
\(=x^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-1\right)\)
\(d,\)\(=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=\left(x^2-x\right)-\left(2x-2\right)\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
a) (x-2)(x-3) = x2 -3x -2x +6 = x2 -5x +6
b) (2x-1)(3x-2) = 6x2 - 4x - 3x +2 = 6x2 -7x +2