Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0
⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)
Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)
Tương tự, ta có:
(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0
⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy trong các số trên thì 2 là nghiệm của phương trình.
Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.
Chúc bạn học tốt@@
Câu 1:
\(\left(x+\dfrac{2}{3}\right)\cdot\left(x-\dfrac{1}{2}\right)=0\)
=>\(\left[{}\begin{matrix}x+\dfrac{2}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Câu 2:
x+1=2x+3
=>x-2x=3-1
=>-x=2
=>x=-2
=>-2 là nghiệm
Câu 3:
ĐKXĐ: x<>-5
\(\dfrac{\left(-x+2\right)\left(2x+10\right)}{x^2+10x+25}=0\)
=>\(\dfrac{\left(-x+2\right)\cdot2\cdot\left(x+5\right)}{\left(x+5\right)^2}=0\)
=>\(\dfrac{2\left(-x+2\right)}{\left(x+5\right)}=0\)
=>-x+2=0
=>x=2(nhận)
Câu 4:
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x-2\ne0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\ne1\\x\ne2\end{matrix}\right.\)
Câu 10: ĐKXĐ: x<>1
\(x^2+\dfrac{1}{x-1}=1+\dfrac{1}{1-x}\)
=>\(x^2-1+\dfrac{1}{x-1}+\dfrac{1}{x-1}=0\)
=>\(\left(x-1\right)\left(x+1\right)+\dfrac{2}{x-1}=0\)
=>\(\dfrac{\left(x^2-1\right)\cdot\left(x-1\right)+2}{x-1}=0\)
=>\(x^3-x^2-x+1+2=0\)
=>\(x^3-x^2-x+3=0\)
=>\(x\simeq-1,36\)
Thay x=1 vào phương trình ta có:
\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)
\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)
TH1: \(a=\dfrac{2}{3}\)
\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)
TH2:a=1
\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
a, (1-x)(5x+3)= (3x-8)(1-x)
<=> (1-x) (5x+3) - (3x-8)(1-x) =0 <=> (1-x) (2x+11) = 0
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
Vậy.........
b, (x-3)(x+4)-2(3x-2)=(x-4)^2
<=> 3x = 24<=> x=8
Vậy .......
c,x^2+ x^3+x+1=0
<=> x^2 (x+1) +(x+1) =0 <=> (x^2 +1)(x+1) =0
<=> x+1 =0 => x=-1
Vậy.......
d, \(\dfrac{x-3}{x+3}-\dfrac{2}{x-3}=\dfrac{3x+1}{9-x^2}\)
\(\Leftrightarrow x^2-6x+9-2x-6=-3x-1\)
\(\Leftrightarrow x^2-5x+4=0\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy...........
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...
Thay x=1 ta được ( 1 - 3a + 1 )( 3 + 2a - 5)
<=> a = 1 (bạn tự giải ra nha, laptop mình hơi mát)
Thay a = 1 ta được: ( x - 3 + 1)( 3x + 2 - 5)
<=> 3(x - 2)(x - 1)
<=> Nghiệm còn lại: x= 2