Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
- vì (x-2015)2 và (y-2014)2 đều là các số chính phương nên luôn luôn lớn hơn 0 (không phụ thuộc vào x;y) hoặc bằng 0
nếu (x-2015)2 + (y-2014)2 = 0
thì (x-2015)2 và (y-2014)2 đều bằng 0
=> x=2015 và y=2014
=> tổng x+y=4029 - xem lại đề nhé
- (x-1)x3(x+1)=0
=> phương trình có 3 nghiệm là -1;0;1 (xét từng trường hợp nếu x3=0; x+1=0 và x-1=0)
Ta luôn có: \(a^3+b^3+c^3=3abc\) (1) ; ( (1) bằng 0 khi và chỉ khi a+b+c = 0)
Áp dụng đẳng thức (1) và bài ta được:
\(\left(2x-1\right)^3+\left(x+5\right)^3+\left(4-3x\right)^3=0\)
<=> \(3.\left(2x-1\right)\left(x+5\right)\left(4-3x\right)=0\)
<=> 2x-1 = 0 => 2x = 1 => x = 1/2
hoặc x+5 = 0 => x = -5
hoặc 4-3x = 0 => 3x = 4 => x = 4/3
Vậy phương trình đã cho có tập nghiệm là S = {\(-5;\frac{4}{3};\frac{1}{2}\)}