Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là phân giác
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
Suy ra: DE=DF
Vì |x-1|+|x+1| luôn ko âm.
Với x âm .
=>2x-3 âm(loại)
Với x=1.
=?2x-3 âm (loại)
=>x>1.
=>|x-1|+|x+1|=x-1+x+1=2x=2x+3.
Hơi vô lí nhỉ!
Ta có: |x - 1| + |x + 1| = 2x - 3
Vì \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left|x+1\right|\ge0\end{cases}}\) \(\Rightarrow\) \(\left|x-1\right|+\left|x+1\right|\ge0\)\(\Rightarrow2x-3\ge0\)\(\Rightarrow2x\ge3\Rightarrow x\ge\frac{3}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1+x+1=2x-3\\x-1+x+1=-\left(2x-3\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=2x-3\\2x=-2x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-2x=-3\\2x+2x=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0x=-3\\4x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=\frac{3}{4}9\left(loai\right)\end{cases}}}\)
Vậy không có giá trị x thỏa mãn.
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+...+a_{0216}}{a_2+a_3+...+a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)
bạn học lớp 6 mà bạn cứ ra đề thi học sinh giỏi đi lớp 6 đi