K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

Kẻ AH⊥BC

ta có: \(VP=AB^2+BC^2-2.AB.BC.cosB=AB^2+BC^2-2.AB.BC.\dfrac{BH}{AB}=AB^2+BC^2-2.BH.BC=AB^2-BH^2+BC^2-2.BH.BC+BH^2=AH^2+\left(BC-BH\right)^2=AH^2+CH^2=AC^2=VT\)

2:

a: =>x^2(5x^2+2)+2=0

x^2>=0

5x^2+2>=2

=>x^2(5x^2+2)>=0 với mọi x

=>x^2(5x^2+2)+2>=2>0 với mọi x

=>PTVN

b: x^4-12x^2+24=0

=>x^4-12x^2+36-12=0

=>(x^2-6)^2-12=0

=>(x^2-6-2căn 3)(x^2-6+2căn 3)=0

=>x^2=6+2căn 3 hoặc x^2=6-2căn 3

=>\(x=\pm\sqrt{6+2\sqrt{3}};x=\pm\sqrt{6-2\sqrt{3}}\)

3 tháng 3 2023

Ta có:

\(\Delta=b^2-4ac=\left(-m\right)^2-4.2.m\) \(=m^2-8m\)

Để phương trình có nghiệm thì \(\Delta\ge0\)

\(\Rightarrow m^2-8m\ge0\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge8\end{matrix}\right.\)

22 tháng 9 2021

Đề ko rõ ràng \(\sqrt{x^2}+x+\dfrac{1}{4}\) hay \(\sqrt{x^2+x+\dfrac{1}{4}}\)??

 

22 tháng 9 2021

m??

c) Ta có: \(\left\{{}\begin{matrix}2x-6y=3\\\dfrac{2}{3}x-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-6y=3\\2x-6y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0x=0\\2x-6y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0x=0\\6y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0x=0\\y=\dfrac{2x-3}{6}\end{matrix}\right.\)(luôn đúng)

Vậy: Hệ phương trình có vô số nghiệm theo dạng \(\left\{{}\begin{matrix}x\in R\\y=\dfrac{2x-3}{6}\end{matrix}\right.\)

24 tháng 2 2021

`2/3x-2y=1`

`<=>2x-6y=3`

Hoàn toàn trùng với phương trình trên

Vậy HPT có vô số nghiệm `x,y in RR`

\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}\)

\(=\sqrt{3}\cdot\dfrac{1}{\sqrt{3}}\)

=1

9 tháng 10 2021

Cho mình hỏi là sao ra được √3 vậy? Tại mình học yếu á. Nên mình không hiểu lắm.

Bài 1: 

a) Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)

\(=\left(2+\sqrt{2}\right)\cdot\dfrac{1}{2+\sqrt{2}}\)

=1

b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)

=1

Bài 2: 

b) Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

\(\Leftrightarrow3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)

\(\Leftrightarrow x^2-1=4\)

\(\Leftrightarrow x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)