Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(A=x^3+27-54-x^3\)
\(A=27\)
Thay x = 27 vào biểu thức , ta có : A = 27
Vậy........................
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`
Lời giải:
$a+b+c=0$
$\Rightarrow a+b=-c$
$\Rightarrow (a+b)^2=(-c)^2$
$\Rightarrow a^2+b^2-c^2=-2ab$
$\Rightarrow \frac{ab}{a^2+b^2-c^2}=\frac{ab}{-2ab}=\frac{-1}{2}$
Tương tự với các phân thức còn lại suy ra:
$A=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}=\frac{-3}{2}$
b: Xét ΔBID có \(\widehat{DBI}=\widehat{DIB}\left(=\widehat{IBC}\right)\)
nên ΔBID cân tại D
Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\left(=\widehat{ICB}\right)\)
nên ΔEIC cân tại E
c: Ta có: DE=DI+IE
mà DI=DB
và EC=IE
nên DE=DB+EC
dap an ra \(\left(x-3+\sqrt{6}\right).\left(x-3-\sqrt{6}\right)\)
nếu bn đưa = bao nhiêu mới giải đc