Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
\(\left|2021x+2022\right|+\left|2021x-2021\right|=\left|2021x+2022\right|+\left|2021-2021x\right|\ge\left|2021x+2022+2021-2021x\right|=\left|4043\right|=4043\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2021x+2022\right)\left(2021-2021x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{2022}{2021}\\x\le1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{2022}{2021}\\x\ge1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow-\dfrac{2022}{2021}\le x\le1\)
Bài 6:
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Xét ΔADM và ΔAEM có
AD=AE
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔADM=ΔAEM
Suy ra: \(\widehat{ADM}=\widehat{AEM}=90^0\)
hay ME⊥AC