K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 9 2017

Lời giải:

Ta có: \(y'=\frac{1}{\cos ^2x}-\frac{1}{\sin ^2x}=\frac{\sin ^2x-\cos^2x}{\sin ^2x\cos^2x}=\frac{1-2\cos^2x}{\sin ^2x\cos^2x}\)

Với \(x\in \left(0,\frac{\pi}{2}\right)\) ta chia làm hai đoạn:

+) \(x\in \left(0,\frac{\pi}{4}\right] \Rightarrow 1-2\cos^2x\leq 0\), hàm là hàm nghịch biến

+) \(x\in \left[\frac{\pi}{4},\frac{\pi}{2}\right)\Rightarrow 1-2\cos^2x\geq 0\), hàm là hàm đồng biến

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
8 tháng 12 2018

\(y'=\left(m^2-2\right)cosx-\dfrac{1}{cos^2x}\)

Để hàm số nghịch biến trên \(\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\Rightarrow y'\le0\) \(\forall x\in\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\)

Đặt \(cosx=t\Rightarrow0< t\le1\) \(\forall x\in\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\)

\(y'=\left(m^2-2\right)t-\dfrac{1}{t^2}\le0\) \(\Leftrightarrow m^2-2\le\dfrac{1}{t^3}\Leftrightarrow m^2\le\dfrac{1}{t^3}+2\) \(\forall t\in\text{(0;1]}\)

Đặt \(f\left(t\right)=\dfrac{1}{t^3}+2\Rightarrow m^2\le\min\limits_{\text{(0;1]}}f\left(t\right)\)

\(f'\left(t\right)=-\dfrac{3}{t^4}< 0\) \(\forall t\in\text{(0;1]}\) \(\Rightarrow f\left(t\right)\) nghịch biến \(\Rightarrow\min\limits_{\text{(0;1]}}f\left(t\right)=f\left(1\right)=3\)

\(\Rightarrow m^2\le3\Rightarrow-\sqrt{3}\le m\le\sqrt{3}\) \(\Rightarrow m=\left\{-1;0;1\right\}\)

\(\Rightarrow\) có 3 giá trị nguyên của m để hàm số nghịch biến trên \(\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\)

đáp án là :

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

2 tháng 4 2019

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

P/S : quá dễ , t là thần đồng mà . 

Mỗi ngày 3 T i c   k , giờ làm như lời hứa đi

NV
20 tháng 1 2019

Đặt \(cotx=t\Rightarrow\) khi x chạy từ \(\dfrac{\pi}{4}\rightarrow\dfrac{\pi}{2}\) thì \(t\) chạy từ 1 về 0

Do đó, nếu \(f\left(x\right)\) đồng biến thì \(f\left(t\right)=\dfrac{2t+1}{t+m}\) nghịch biến trên \(\left(0;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\\left[{}\begin{matrix}-m< 0\\-m>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \dfrac{1}{2}\\m< -1\end{matrix}\right.\)

NV
20 tháng 1 2019

Hàm \(f\left(t\right)\) là hàm bậc nhất trên bậc nhất nên nó nghịch biến khi ad-bc<0

Hơn nữa, 1 điều cần rất chú ý trong loại toán tìm khoảng (a;b) nghịch biến cho hàm bậc nhất trên bậc nhất là là nghiệm của phương trình "mẫu thức = 0" cần né khoảng này ra. Ví dụ, để hàm \(f\left(t\right)\) đồng biến trên (0;1) thì trước hết nó phải liên tục, ko bị gián đoạn trên đoạn này

Mà pt mẫu \(t+m=0\) có nghiệm \(t=-m\)

Nên \(-m\) phải nằm ngoài khoảng \(\left(0;1\right)\) tức \(-m< 0\) hoặc \(-m>1\)

Bạn hiểu chưa ạ?

10 tháng 9 2020

Đặt t=cotx, t>0

Ta có: y=\(\frac{t+1}{10t+m}\)

\(\Rightarrow y'=\frac{m-10}{\left(10t+m\right)^2}\)

Để hàm số đồng biến trên \(\left(0;\frac{\pi}{2}\right)\)mà hàm số t lại nghịch biến trên \(\left(0;\frac{\pi}{2}\right)\)thì m-10<0

\(\Leftrightarrow m< 10\)

Lại có điều kiện để hàm số xác định: 10t+m\(\ne0\) \(\Leftrightarrow10t\ne-m\)\(\Leftrightarrow-10t\ne m\)

Mà t>0 \(\Rightarrow-10t< 0\:\Rightarrow m\ge0\)

Vậy \(0\le m< 10\) thì hàm số đồng biến trên \(\left(0;\frac{\pi}{2}\right)\)

Không hiểu thì bạn hỏi lại mình nha ><

NV
10 tháng 9 2020

Đặt \(cotx=t\) \(\Rightarrow t>0\)

Ta thấy rằng khi x tăng trên \(\left(0;\frac{\pi}{2}\right)\) thì t giảm trên \(\left(0;+\infty\right)\)

Do đó hàm \(y=\frac{cotx+1}{10cotx+m}\) tăng trên \(\left(0;\frac{\pi}{2}\right)\Leftrightarrow y=\frac{t+1}{10t+m}\) giảm trên \(\left(0;+\infty\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y'=\frac{m-10}{\left(10t+m\right)^2}< 0\\-\frac{m}{10}\notin\left(0;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 10\\-\frac{m}{10}\le0\end{matrix}\right.\) \(\Leftrightarrow0\le m< 10\)

4 tháng 8 2017

y’ = 2x ≤ 0 trên đoạn [-3; 0]. Vậy hàm số nghịch biến trên đoạn [-3,0].

Khi đó trên đoạn [-3,0]: hàm số đạt giá trị lớn nhất tại x = -3 và giá trị lớn nhất bằng 9, hàm số đạt giá trị nhỏ nhất tại x = 0 và giá trị nhỏ nhất = 0.

20 tháng 7 2017

y = x – sinx, x  ∈  [0; 2 π ].

y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2 π ]

Dấu “=” xảy ra chỉ tại x = 0 và x = 2 π .

Vậy hàm số đồng biến trên đoạn [0; 2 π ].

21 tháng 6 2021

kiểu bài này có đáp án trên mạng rồi ấy ạ, anh/chị/ bạn nào mà xem qua đáp án trên mạng có thể giải thích kĩ hơn giúp em chỗ cos 1/x >0 về đoạn sau được không ạ, chứ ai đọc mãi mà không hiểu được 😭😭

NV
22 tháng 6 2021

Bất phương trình lượng giác:

\(cos\left(X\right)\ge a\Leftrightarrow-arccos\left(a\right)+k2\pi\le X\le arccos\left(a\right)+k2\pi\)

Vậy BPT: \(cos\left(\dfrac{1}{x}\right)>0\)

\(\Leftrightarrow-\dfrac{\pi}{2}+k2\pi\le\dfrac{1}{x}\le\dfrac{\pi}{2}+k2\pi\) với \(k\ge1\)

Nghịch đảo: \(\dfrac{2}{k4\pi-\pi}\le x\le\dfrac{2}{k4\pi+\pi}\)