Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: |x|=5,6
=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)
c: \(\left|x\right|=3\dfrac{1}{5}\)
=>\(\left|x\right|=3,2\)
=>\(\left[{}\begin{matrix}x=3,2\\x=-3,2\end{matrix}\right.\)
d: |x|=-2,1
mà -2,1<0
nên \(x\in\varnothing\)
d: |x-3,5|=5
=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)
e: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=>\(\left|x+\dfrac{3}{4}\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{2}\\x+\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
f: \(\left|4x\right|-\left|-13,5\right|=\left|2\dfrac{1}{4}\right|\)
=>\(4\left|x\right|=2,25+13,5=15,75\)
=>\(\left|x\right|=\dfrac{63}{16}\)
=>\(x=\pm\dfrac{63}{16}\)
g: \(\dfrac{5}{6}-\left|2-x\right|=\dfrac{1}{3}\)
=>\(\dfrac{5}{6}-\left|x-2\right|=\dfrac{1}{3}\)
=>\(\left|x-2\right|=\dfrac{5}{6}-\dfrac{1}{3}=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x-2=\dfrac{1}{2}\\x-2=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
h: \(\left|x-\dfrac{2}{5}\right|+\dfrac{1}{2}=\dfrac{3}{4}\)
=>\(\left|x-\dfrac{2}{5}\right|=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{1}{4}\\x-\dfrac{2}{5}=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}+\dfrac{2}{5}=\dfrac{13}{20}\\x=-\dfrac{1}{4}+\dfrac{2}{5}=\dfrac{-5+8}{20}=\dfrac{3}{20}\end{matrix}\right.\)
i: \(\left|5-3x\right|+\dfrac{2}{3}=\dfrac{1}{6}\)
=>\(\left|3x-5\right|=\dfrac{1}{6}-\dfrac{2}{3}=\dfrac{1}{6}-\dfrac{4}{6}=-\dfrac{3}{6}=-\dfrac{1}{2}< 0\)
=>\(x\in\varnothing\)
k: \(-2,5+\left|3x+5\right|=-1,5\)
=>|3x+5|=-1,5+2,5=1
=>\(\left[{}\begin{matrix}3x+5=1\\3x+5=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\3x=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=-2\end{matrix}\right.\)
m: \(\dfrac{1}{5}-\left|\dfrac{1}{5}-x\right|=\dfrac{1}{5}\)
=>\(\left|\dfrac{1}{5}-x\right|=\dfrac{1}{5}-\dfrac{1}{5}=0\)
=>\(\dfrac{1}{5}-x=0\)
=>\(x=\dfrac{1}{5}\)
n: \(-\dfrac{22}{15}x+\dfrac{1}{3}=\left|-\dfrac{2}{3}+\dfrac{1}{5}\right|\)
=>\(-\dfrac{22}{15}x+\dfrac{1}{3}=\dfrac{2}{3}-\dfrac{1}{5}\)
=>\(-\dfrac{22}{15}x=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)
=>-22x=2
=>\(x=-\dfrac{1}{11}\)
(2/3-3/4)^2 x 12/7-5/7 = -15/49
nha bạn chúc bạn học tốt nha
\(\frac{1}{4}\) và \(\frac{1}{2}\)
Vì 0x = 0 (Với mọi \(x\in R\)); 12x = 1 (Với mọi \(x\in Z\)).
a) \(\dfrac{49}{81}=\dfrac{7^x}{9^x}\)(sửa đề)
\(\Leftrightarrow\left(\dfrac{7}{9}\right)^2=\left(\dfrac{7}{9}\right)^x\)\(\Rightarrow x=2\)
b) \(\dfrac{-64}{343}=\left(-\dfrac{4^x}{7^x}\right)\)(sửa đề)
\(\Leftrightarrow\left(-\dfrac{4}{7}\right)^3=\left(-\dfrac{4}{7}\right)^x\) \(\Rightarrow x=3\)
c) \(\dfrac{9}{144}=\dfrac{3^x}{12^x}\)(sửa đề)
\(\Leftrightarrow\left(\dfrac{3}{12}\right)^2=\left(\dfrac{3}{12}\right)^x\Rightarrow x=2\)
d) \(-\dfrac{1}{32}=\left(-\dfrac{1^x}{2^x}\right)\)(sửa đề)
\(\Leftrightarrow\left(-\dfrac{1}{2}\right)^5=\left(-\dfrac{1}{2}\right)^x\Rightarrow x=5\)
Mong bạn xem lại đề bài.
\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(=\left(1+\dfrac{2007}{2}\right)+\left(1+\dfrac{2006}{3}\right)+...+\left(\dfrac{2}{1007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)
\(=\dfrac{2009}{1}+\dfrac{2009}{2}+...+\dfrac{2009}{2008}\)
\(=2009\)
\(\frac{2}{x}=\frac{3}{y}\)
\(\Rightarrow3x=2y\)
\(\Rightarrow x=\frac{2y}{3}\)
Thay x vào xy ( đề bài ) ta có :
\(\frac{2y}{3}\cdot y=96\)
\(\Rightarrow\frac{2y^2}{3}=96\)
\(\Rightarrow2y^2=288\)
\(\Rightarrow y^2=144\)
\(\Rightarrow y=\left\{\pm12\right\}\)
\(\Rightarrow\orbr{\begin{cases}y=12\Rightarrow x=8\\y=-12\Rightarrow-8\end{cases}}\)
Vậy các cặp ( x; y ) thỏa mãn là ( 8; 12 ) và ( -8; -12 )
a: Xét ΔAMB và ΔAMC có
AB=AC
AM chung
MB=MC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
d: Xét ΔAKB và ΔAKC có
AK chung
\(\widehat{BAK}=\widehat{CAK}\)
AB=AC
Do đó: ΔAKB=ΔAKC
Suy ra: KB=KC
a) vì trong tam giác cân đường cao đồng thời là đường trung tuyến nên AH là đường trung tuyến nên BH = CH
b) ta có BH=CH =1/2BC = 3(cm)
ΔABH vuông tại H
Áp dụng định lý Pi-ta-go, ta có:
AH2+BH2=AB2
⇒ AH2 = AB2-BH2
⇒ AH2 = 52-32
⇒ AH2= 16
⇒ AH = 4(cm)