K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

Ảnh bị lỗi mới cập lại

22 tháng 7 2021

`sin(2x-π/3)+1=0`
`<=>sin(2x-π/3)=-1`
`<=>2x-π/3=-π/2=k2π`
`<=>x=(5π)/12+kπ (k \in ZZ)`
Có: `-2020π < (5π)/12+kπ < 2020π`
`<=> -2020 < 5/12+k<2020`
`<=>-2020-5/12 <k<2020+5/12`
`=> k \in {-2020;.....;2020}`
`=>` Có `4041` giá trị của `k` thỏa mãn.

16 tháng 7 2021

3cos2x + 10sinx + 1 = 3( 1 - 2sinx^2) + 10 sinx + 1

                                 = - 6 sinx^2 + 10sinx + 4

                                 = 2(3sinx + 1)(2- sinx)= 0

16 tháng 7 2021

ý 2 là trên đoạn nào bn ? 

NV
25 tháng 10 2021

\(sinx-\sqrt{3}cos\left(x+\pi\right)=2sin2x\)

\(\Leftrightarrow sinx+\sqrt{3}cosx=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=sin2x\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{3}+k2\pi\\2x=\dfrac{2\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Cả 4 đáp án đều ko đúng

29 tháng 6 2021

Đk:\(tanx\ne\pm1;tanx\ne0;sin\left(x+\dfrac{\pi}{4}\right)\ne0\)

Pt \(\Leftrightarrow\dfrac{\dfrac{sinx}{cosx}}{1-\dfrac{sin^2x}{cos^2x}}=\dfrac{1}{2}.cotx\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\dfrac{sinx.cosx}{cos^2x-sin^2x}=\dfrac{1}{2}.cotx\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\dfrac{\dfrac{1}{2}.sin2x}{cos2x}=\dfrac{1}{2}.tan\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow tan2x=tan\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow2x=\dfrac{\pi}{4}-x+k\pi\), k nguyên

\(\Leftrightarrow x=\dfrac{\pi}{12}+k.\dfrac{\pi}{3}\)

Ý D

29 tháng 6 2021

Chị cx xem Euro à :>

NV
30 tháng 6 2021

Đặt \(x-\dfrac{\pi}{4}=t\Rightarrow x=t+\dfrac{\pi}{4}\Rightarrow3x-\dfrac{\pi}{4}=3\left(t+\dfrac{\pi}{4}\right)-\dfrac{\pi}{4}=3t+\dfrac{\pi}{2}\)

\(\Rightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\left(3t+\dfrac{\pi}{4}\right)=cos3t\)

Đồng thời: \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)

\(=1-\dfrac{1}{2}sin^22x=1-\dfrac{1}{2}sin^2\left(2t+\dfrac{\pi}{2}\right)=1-\dfrac{1}{2}cos^22t\)

Nên pt trở thành:

\(1-\dfrac{1}{2}cos^22t+cost.cos3t-\dfrac{3}{2}=0\)

\(\Leftrightarrow-1-cos^22t+cos4t+cos2t=0\)

\(\Leftrightarrow-1-cos^22t+2cos^22t-1+cos2t=0\)

\(\Leftrightarrow cos^22t+cos2t-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2t=1\\cos2t=-2\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow2t=k2\pi\)

\(\Leftrightarrow t=k\pi\)

\(\Leftrightarrow x-\dfrac{\pi}{4}=k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)